login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A056976
Number of blocks of {0, 1, 0} in the binary expansion of n.
10
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 2, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 2, 1, 0, 0, 0, 0, 1, 1, 2, 1, 2, 2, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0
OFFSET
1,42
LINKS
Eric Weisstein's World of Mathematics, Digit Block
FORMULA
a(2n) = a(n) + [n>1 and n congruent to 1 mod 4], a(2n+1) = a(n). - Ralf Stephan, Aug 22 2003
MATHEMATICA
a[n_, bits_] := (idn = IntegerDigits[n, 2]; ln = Length[idn]; lb = Length[bits]; For[cnt = 0; k = 1, k <= ln - lb + 1, k++, If[idn[[k ;; k + lb - 1]] == bits, cnt++]]; cnt); Table[ a[n, {0, 1, 0}], {n, 1, 102} ] (* Jean-François Alcover, Oct 23 2012 *)
Table[SequenceCount[IntegerDigits[n, 2], {0, 1, 0}, Overlaps->True], {n, 120}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 11 2019 *)
PROG
(PARI)
a(n) = {
if (n < 10, return(0));
my(k = logint(n, 2) - 1);
hammingweight(bitnegimply(n>>1, bitor(n, n >> 2))) - !bittest(n, k)
};
vector(102, i, a(i)) \\ Gheorghe Coserea, Sep 17 2015
KEYWORD
nonn,easy
STATUS
approved