Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Oct 10 2017 10:29:36
%S 0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,2,1,
%T 1,0,0,0,0,1,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,3,2,2,1,
%U 1,1,1,1,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,2,1,1,0,0,0
%N Number of blocks of {0, 0, 0} in the binary expansion of n.
%C Overlaps count. For example, 64 in binary is 1000000, which means that a(64) = 4, not 2. - _Harvey P. Dale_, Jan 10 2016
%H Antti Karttunen, <a href="/A056974/b056974.txt">Table of n, a(n) for n = 1..65537</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DigitBlock.html">Digit Block</a>
%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%F a(1) = 0, and then after, a(2n) = a(n) + [n congruent to 0 mod 8], a(2n+1) = a(n). - _Ralf Stephan_, Aug 22 2003, corrected by _Antti Karttunen_, Oct 10 2017
%t a[n_, bits_] := (idn = IntegerDigits[n, 2]; ln = Length[idn]; lb = Length[bits]; For[cnt = 0; k = 1, k <= ln - lb + 1, k++, If[idn[[k ;; k + lb - 1]] == bits, cnt++]]; cnt); Table[ a[n, {0, 0, 0}], {n, 1, 102} ] (* _Jean-François Alcover_, Oct 23 2012 *)
%t Table[SequenceCount[IntegerDigits[n,2],{0,0,0},Overlaps->True],{n,110}] (* The program uses the SequenceCount function from Mathematica version 10 *) (* _Harvey P. Dale_, Jan 10 2016 *)
%o (PARI) a(n)=my(v=binary(n));sum(i=3,#v,v[i]+v[i-1]+v[i-2]==0) \\ _Charles R Greathouse IV_, Dec 07 2011
%o (PARI)
%o a(n) = {
%o my(x = bitor(n, bitor(n>>1, n>>2)));
%o if (x == 0, 0, 1 + logint(x, 2) - hammingweight(x))
%o };
%o vector(102, i, a(i)) \\ _Gheorghe Coserea_, Sep 17 2015
%o (Scheme)
%o ;; This uses Ralf Stephan's recurrence and memoization-macro definec:
%o (definec (A056974 n) (cond ((= 1 n) 0) ((even? n) (+ (if (zero? (modulo n 8)) 1 0) (A056974 (/ n 2)))) (else (A056974 (/ (- n 1) 2))))) ;; _Antti Karttunen_, Oct 10 2017
%Y Cf. A014082, A056974, A056975, A056976, A056977, A056978, A056979, A056980.
%K nonn,base,easy
%O 1,16
%A _Eric W. Weisstein_