login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172090
Triangle T(n, k) = f(n-k) + f(k) - f(n), where f(n) = -3*n with f(0) = 1, f(1) = -2, read by rows.
1
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1
OFFSET
0,5
FORMULA
T(n, k) = f(n-k) + f(k) - f(n), where f(n) = -3*n with f(0) = 1, f(1) = -2.
From G. C. Greubel, Apr 29 2021: (Start)
T(n, k) is defined by T(n, 0) = T(n, 1) = T(n, n-1) = T(n, n) = T(3, k) = 1, T(2, 1) = 2 and 0 otherwise.
Sum_{k=0..n} T(n,k) = A151798(n). (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 2, 1;
1, 1, 1, 1;
1, 1, 0, 1, 1;
1, 1, 0, 0, 1, 1;
1, 1, 0, 0, 0, 1, 1;
1, 1, 0, 0, 0, 0, 1, 1;
1, 1, 0, 0, 0, 0, 0, 1, 1;
1, 1, 0, 0, 0, 0, 0, 0, 1, 1;
1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1;
MATHEMATICA
(* First program *)
f[n_]:= f[n]= If[n < 2, (-1)^n*(n+1), -3*n];
T[n_, k_]:= f[n-k] +f[k] -f[n];
Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Apr 29 2021 *)
(* Second program *)
T[n_, k_]:= If[n<3, Binomial[n, k], If[n==3 || k<2 || k>n-2, 1, 0]];
Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 29 2021 *)
PROG
(Sage)
def f(n): return (-1)^n*(n+1) if (n<2) else -3*n
def T(n, k): return f(n-k) + f(k) - f(n)
flatten([[T(n, k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Apr 29 2021
CROSSREFS
Row sums are A151798.
Sequence in context: A316863 A037911 A176046 * A037912 A056980 A268643
KEYWORD
nonn,tabl,easy,less
AUTHOR
Roger L. Bagula, Jan 25 2010
EXTENSIONS
Edited by G. C. Greubel, Apr 29 2021
STATUS
approved