login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172093
Triangle, read by rows, T(n,k,q) = c(k,q) + c(n-k,q) - c(n, q) where c(n,q) = Product_{j=1..n-1} ((q^(j+1) - 1)/(q-1)) and q = 4.
3
1, 1, 1, 1, -3, 1, 1, -99, -99, 1, 1, -8819, -8915, -8819, 1, 1, -3034499, -3043315, -3043315, -3034499, 1, 1, -4151231699, -4154266195, -4154274915, -4154266195, -4151231699, 1, 1, -22682342182499, -22686493414195, -22686496448595, -22686496448595, -22686493414195, -22682342182499, 1
OFFSET
0,5
COMMENTS
Row sums are: {1, 2, -2, -356, -86660, -90587564, -442533635468, -10372635857431772, -1181791865462943686876, ...}.
FORMULA
Let c(n,q) = Product_{j=1..n-1} ((q^(j+1) - 1)/(q-1)) then T(n,k,q) = -c(n,q) + c(n-k,q) + c(k, q) for q=4.
EXAMPLE
Triangle begins as:
1;
1, 1;
1, -3, 1;
1, -99, -99, 1;
1, -8819, -8915, -8819, 1;
1, -3034499, -3043315, -3043315, -3034499, 1;
MAPLE
T:= proc(n, k, q) option remember;
c(n, q):= mul( (q^(j+1) -1)/(q-1), j=1..n-1);
T(n, k, q):= c(k, q) + c(n-k, q) - c(n, q);
end:
seq(seq(T(n, k, 4), k=0..n), n=0..10); # G. C. Greubel, Dec 05 2019
MATHEMATICA
c[n_, q_]:= Product[(q^(j+1) -1)/(q-1), {j, n-1}]; T[n_, k_, q_]:= c[k, q] + c[n-k, q] - c[n, q]; Table[T[n, k, 4], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Dec 05 2019 *)
PROG
(PARI) c(n, q) = prod(j=1, n-1, (q^(j+1) -1)/(q-1));
T(n, k, q) = c(k, q) + c(n-k, q) - c(n, q);
for(n=0, 10, for(k=0, n, print1(T(n, k, 4), ", "))) \\ G. C. Greubel, Dec 05 2019
(Magma) c:= func< n, q | n lt 2 select 1 else &*[(q^(j+1) -1)/(q-1): j in [1..n-1]] >;
T:= func< n, k, q | c(k, q) + c(n-k, q) - c(n, q) >;
[T(n, k, 4): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 05 2019
(Sage)
def c(n, q): return product( (q^(j+1) -1)/(q-1) for j in (1..n-1))
def T(n, k, q): return c(k, q) + c(n-k, q) - c(n, q)
[[T(n, k, 4) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 05 2019
CROSSREFS
Cf. A172091 (q=2), A172092 (q=3), this sequence (q=4).
Sequence in context: A168549 A010272 A368026 * A294402 A145738 A232802
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Jan 25 2010
EXTENSIONS
Edited by G. C. Greubel, Dec 05 2019
STATUS
approved