login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358216
Inverse Möbius transform of A327936, where A327936 is multiplicative with a(p^e) = p if e >= p, otherwise 1.
2
1, 2, 2, 4, 2, 4, 2, 6, 3, 4, 2, 8, 2, 4, 4, 8, 2, 6, 2, 8, 4, 4, 2, 12, 3, 4, 6, 8, 2, 8, 2, 10, 4, 4, 4, 12, 2, 4, 4, 12, 2, 8, 2, 8, 6, 4, 2, 16, 3, 6, 4, 8, 2, 12, 4, 12, 4, 4, 2, 16, 2, 4, 6, 12, 4, 8, 2, 8, 4, 8, 2, 18, 2, 4, 6, 8, 4, 8, 2, 16, 9, 4, 2, 16, 4, 4, 4, 12, 2, 12, 4, 8, 4, 4, 4, 20, 2, 6, 6, 12
OFFSET
1,2
COMMENTS
Multiplicative because A327936 is.
FORMULA
a(n) = Sum_{d|n} A327936(d).
For all n >= 0, a(A276086(n)) = A324655(n).
For all n >= 1, a(n) >= A000005(n).
Multiplicative with a(p^e) = e + 1 if e < p, and p*(e - p + 2) otherwise. - Amiram Eldar, Nov 30 2022
MATHEMATICA
f[p_, e_] := If[e < p, e + 1, p*(e - p + 2)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 30 2022 *)
PROG
(PARI)
A327936(n) = { my(f = factor(n)); for(k=1, #f~, f[k, 2] = (f[k, 2]>=f[k, 1])); factorback(f); };
A358216(n) = sumdiv(n, d, A327936(d));
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Nov 30 2022
STATUS
approved