login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Dirichlet inverse of A327936, which is multiplicative sequence with a(p^e) = p if e >= p, otherwise 1.
4

%I #12 Jan 26 2023 04:13:07

%S 1,-1,-1,-1,-1,1,-1,1,0,1,-1,1,-1,1,1,1,-1,0,-1,1,1,1,-1,-1,0,1,-2,1,

%T -1,-1,-1,-1,1,1,1,0,-1,1,1,-1,-1,-1,-1,1,0,1,-1,-1,0,0,1,1,-1,2,1,-1,

%U 1,1,-1,-1,-1,1,0,-1,1,-1,-1,1,1,-1,-1,0,-1,1,0,1,1,-1,-1,-1,2,1,-1,-1,1,1,1,-1,-1,0,1,1,1,1,1,1,-1,0,0,0,-1,-1,-1,-1,-1,1,-1,2

%N Dirichlet inverse of A327936, which is multiplicative sequence with a(p^e) = p if e >= p, otherwise 1.

%C Multiplicative because A327936 is.

%H Antti Karttunen, <a href="/A359432/b359432.txt">Table of n, a(n) for n = 1..65537</a>

%F Multiplicative with a(p^e) = (1 - p)^(e/p) if p | e, -(1 - p)^((e - 1)/p) if e == 1 (mod p), and 0 otherwise. - _Amiram Eldar_, Jan 26 2023

%t f[p_, e_] := Switch[Mod[e, p], 0, (1 - p)^(e/p), 1, -(1 - p)^((e - 1)/p), _, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Table[a[n], {n, 1, 100}] (* _Amiram Eldar_, Jan 26 2023 *)

%o (PARI)

%o A327936(n) = { my(f = factor(n)); for(k=1, #f~, f[k,2] = (f[k,2]>=f[k,1])); factorback(f); };

%o memoA359432 = Map();

%o A359432(n) = if(1==n,1,my(v); if(mapisdefined(memoA359432,n,&v), v, v = -sumdiv(n,d,if(d<n,A327936(n/d)*A359432(d),0)); mapput(memoA359432,n,v); (v)));

%Y Cf. A327936.

%Y Cf. A038838 (positions of even terms), A122132 (of odd terms), A353627 (parity of terms).

%Y Cf. also A358216, A359433.

%K sign,mult

%O 1,27

%A _Antti Karttunen_, Jan 02 2023