login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A284954 0-limiting word of the morphism 0->10, 1-> 000. 4
0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1

COMMENTS

The morphism 0->10, 1->000 has two limiting words.  If the number of iterations is even, the 0-word evolves from 0 -> 10 -> 00010 -> 10101000010 -> 00010000100001010101000010; if the number of iterations is odd, the 1-word evolves from 0 -> 10 -> 00010 -> 10101000010, as in A284957.

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..10000

MATHEMATICA

s = Nest[Flatten[# /. {0 -> {1, 0}, 1 -> {0, 0, 0}}] &, {0}, 8]; (* A284954 *)

Flatten[Position[s, 0]]; (* A284955  *)

Flatten[Position[s, 1]]; (* A284956 *)

CROSSREFS

Cf. A284955, A284956, A284957.

Sequence in context: A024889 A101349 A295308 * A221151 A342753 A188086

Adjacent sequences:  A284951 A284952 A284953 * A284955 A284956 A284957

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Apr 18 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 01:28 EST 2022. Contains 350481 sequences. (Running on oeis4.)