|
|
A284951
|
|
Numbers 2n for which A284950(n) is higher than for all smaller 2n.
|
|
0
|
|
|
2, 8, 24, 30, 60, 90, 120, 210, 420, 630, 840, 1050, 1260, 1680, 1890, 2310, 2730, 3780, 3990, 4200, 4620, 4830, 5460, 6930, 8190, 9240, 10710, 10920, 11550, 13650, 13860, 15960, 16170, 18480, 20790, 21840, 23100, 25410, 27300, 27720, 30030, 39270
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Table of n, a(n) for n=1..42.
|
|
EXAMPLE
|
A284950 begins 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 2, 1, 0, 3, 0, 1, with values in 1st, 4th, 12th and 15th place that are larger than all previous values. So the sequence begins by doubling 1, 4, 12, 15 to get 2, 8, 24, 30.
|
|
MATHEMATICA
|
k = 0;
Print [1, " ", 0];
For[i = 1, i < 1001, i++,
ee = 2*i;
a = 0;
For[j = 3, j < ee/2, j += 2,
If[PrimeQ[j] == True && PrimeQ[ee - j] == True,
If[PrimeQ[ee + j] == True, a += 1]]];
If[a > k, k = a; Print[ee, " ", a]]]
|
|
CROSSREFS
|
Sequence in context: A354176 A007346 A062247 * A171261 A084744 A122547
Adjacent sequences: A284948 A284949 A284950 * A284952 A284953 A284954
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Neil Fernandez, Apr 06 2017
|
|
STATUS
|
approved
|
|
|
|