login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A368701
a(n) = 1 if n satisfies the arithmetic differential equation 2n" - n' - 4 = 0, otherwise 0. Cf. A003415.
4
0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
1
FORMULA
a(n) = [0 == 2*A068346(n) - A003415(n) - 4], where [ ] is the Iverson bracket.
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A368701(n) = (4==(2*A003415(A003415(n)) - A003415(n)));
CROSSREFS
Characteristic function of A334261.
Sequence in context: A288314 A285963 A024889 * A101349 A295308 A284954
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 09 2024
STATUS
approved