login
A358752
a(n) = 1 if A349905(n) == 2 (mod 4), otherwise 0. Here A349905(n) is the arithmetic derivative applied to the prime shifted n.
5
0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0
OFFSET
1
FORMULA
a(n) = 1-A152822(A349905(n)).
a(n) = A353495(A003961(n)).
a(n) = A065043(n) - A358750(n).
a(n) = [3-A010873(A001222(n)) == A010873(A003961(n))], where [ ] is the Iverson bracket.
a(n) = [bigomega(n) == 2*A246260(n) (mod 4)].
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A358752(n) = (2==(A349905(n)%4));
(PARI)
A010873(n) = (n%4);
A358752(n) = (3-A010873(bigomega(n))==A010873(A003961(n)));
CROSSREFS
Characteristic function of A358762.
Sequence in context: A359429 A353470 A342753 * A368913 A354820 A188086
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 29 2022
STATUS
approved