login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358750
a(n) = 1 if A349905(n) is a multiple of 4, otherwise 0. Here A349905(n) is the arithmetic derivative applied to the prime shifted n.
5
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0
OFFSET
1
FORMULA
a(n) = A121262(A349905(n)).
a(n) = A353494(A003961(n)).
a(n) = A065043(n) - A358752(n).
a(n) = [A010873(A001222(n))+1 == A010873(A003961(n))], where [ ] is the Iverson bracket.
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A358750(n) = !(A349905(n)%4);
(PARI)
A010873(n) = (n%4);
A358750(n) = (A010873(bigomega(n))==(A010873(A003961(n))-1));
CROSSREFS
Characteristic function of A358760.
Sequence in context: A014834 A015659 A132918 * A205809 A353370 A355940
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 29 2022
STATUS
approved