login
A358750
a(n) = 1 if A349905(n) is a multiple of 4, otherwise 0. Here A349905(n) is the arithmetic derivative applied to the prime shifted n.
5
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0
OFFSET
1
FORMULA
a(n) = A121262(A349905(n)).
a(n) = A353494(A003961(n)).
a(n) = A065043(n) - A358752(n).
a(n) = [A010873(A001222(n))+1 == A010873(A003961(n))], where [ ] is the Iverson bracket.
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A358750(n) = !(A349905(n)%4);
(PARI)
A010873(n) = (n%4);
A358750(n) = (A010873(bigomega(n))==(A010873(A003961(n))-1));
CROSSREFS
Characteristic function of A358760.
Sequence in context: A014834 A015659 A132918 * A205809 A380477 A353370
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 29 2022
STATUS
approved