OFFSET
1,1
COMMENTS
Also the characteristic function of the numbers that are not squarefree: A013929. - Enrique Pérez Herrero, Jul 08 2012
The sequence of partial sums of this sequence is A057627. - Jason Kimberley, Feb 01 2017
LINKS
Enrique Pérez Herrero, Table of n, a(n) for n = 1..5000
FORMULA
a(n) = 1 if A056170(n)>0, 0 otherwise.
a(n) = 1 - A008966(n). - Reinhard Zumkeller, Oct 03 2008
a(n) = Sum_{k=0..n-1} (mu(n-k-1) mod 2) - Sum_{k=0..n-1} (mu(n-k) mod 2).
a(n) = abs(mu(n) - (-1)^omega(n)) = (mu(n) - (-1)^omega(n))^2 = abs(A008683(n) - (-1)^A001221(n)). - Enrique Pérez Herrero, Apr 28 2012
a(n) = 1 - mu(n)^2. - Enrique Pérez Herrero, Jul 08 2012
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 - 6/Pi^2 (A229099). - Amiram Eldar, Jul 24 2022
MAPLE
seq(1 - abs(numtheory:-mobius(n)), n = 1..101); # Peter Luschny, Jul 27 2023
MATHEMATICA
Table[1-MoebiusMu[n]^2, {n, 1, 100}] (* Enrique Pérez Herrero, Jul 08 2012 *)
PROG
(Python)
from sympy import mobius
def A107078(n): return int(not mobius(n)) # Chai Wah Wu, Dec 05 2024
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 10 2005
STATUS
approved