login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A330794
Inverse of the Jacobsthal triangle (A322942). Triangle read by rows, T(n, k) for 0 <= k <= n.
1
1, -1, 1, 1, -2, 1, -1, 1, -3, 1, 1, 4, 2, -4, 1, -1, -7, 10, 4, -5, 1, 1, -14, -25, 16, 7, -6, 1, -1, 65, -21, -55, 21, 11, -7, 1, 1, -24, 196, -8, -98, 24, 16, -8, 1, -1, -367, -204, 400, 42, -154, 24, 22, -9, 1, 1, 774, -963, -688, 666, 148, -222, 20, 29, -10, 1
OFFSET
0,5
COMMENTS
The inverse matrix of the Riordan square (cf. A321620) generated by (1 - 2*x^2)/((1 + x)*(1 - 2*x)).
LINKS
FORMULA
From G. C. Greubel, Sep 15 2023: (Start)
T(n, 0) = (-1)^n.
T(n, n) = 1.
T(n, n-1) = -n.
T(n, n-2) = A152947(n-1). (End)
EXAMPLE
Triangle starts:
[0] 1;
[1] -1, 1;
[2] 1, -2, 1;
[3] -1, 1, -3, 1;
[4] 1, 4, 2, -4, 1;
[5] -1, -7, 10, 4, -5, 1;
[6] 1, -14, -25, 16, 7, -6, 1;
[7] -1, 65, -21, -55, 21, 11, -7, 1;
[8] 1, -24, 196, -8, -98, 24, 16, -8, 1;
[9] -1, -367, -204, 400, 42, -154, 24, 22, -9, 1;
MATHEMATICA
m=30;
A322942:= CoefficientList[CoefficientList[Series[(1-2*t^2)/(1-(x+1)*t-2*t^2), {x, 0, m}, {t, 0, m}], t], x];
M:= M= Table[If[k<=n, A322942[[n+1, k+1]], 0], {n, 0, m}, {k, 0, m}];
g:= g= Inverse[M];
A330794[n_, k_]:= g[[n+1, k+1]];
Table[A330794[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Sep 20 2023 *)
PROG
(Sage) # uses[riordan_array from A256893]
Jacobsthal = (2*x^2 - 1)/((x + 1)*(2*x - 1))
riordan_array(Jacobsthal, Jacobsthal, 10).inverse()
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Jan 03 2020
STATUS
approved