login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330794
Inverse of the Jacobsthal triangle (A322942). Triangle read by rows, T(n, k) for 0 <= k <= n.
1
1, -1, 1, 1, -2, 1, -1, 1, -3, 1, 1, 4, 2, -4, 1, -1, -7, 10, 4, -5, 1, 1, -14, -25, 16, 7, -6, 1, -1, 65, -21, -55, 21, 11, -7, 1, 1, -24, 196, -8, -98, 24, 16, -8, 1, -1, -367, -204, 400, 42, -154, 24, 22, -9, 1, 1, 774, -963, -688, 666, 148, -222, 20, 29, -10, 1
OFFSET
0,5
COMMENTS
The inverse matrix of the Riordan square (cf. A321620) generated by (1 - 2*x^2)/((1 + x)*(1 - 2*x)).
LINKS
FORMULA
From G. C. Greubel, Sep 15 2023: (Start)
T(n, 0) = (-1)^n.
T(n, n) = 1.
T(n, n-1) = -n.
T(n, n-2) = A152947(n-1). (End)
EXAMPLE
Triangle starts:
[0] 1;
[1] -1, 1;
[2] 1, -2, 1;
[3] -1, 1, -3, 1;
[4] 1, 4, 2, -4, 1;
[5] -1, -7, 10, 4, -5, 1;
[6] 1, -14, -25, 16, 7, -6, 1;
[7] -1, 65, -21, -55, 21, 11, -7, 1;
[8] 1, -24, 196, -8, -98, 24, 16, -8, 1;
[9] -1, -367, -204, 400, 42, -154, 24, 22, -9, 1;
MATHEMATICA
m=30;
A322942:= CoefficientList[CoefficientList[Series[(1-2*t^2)/(1-(x+1)*t-2*t^2), {x, 0, m}, {t, 0, m}], t], x];
M:= M= Table[If[k<=n, A322942[[n+1, k+1]], 0], {n, 0, m}, {k, 0, m}];
g:= g= Inverse[M];
A330794[n_, k_]:= g[[n+1, k+1]];
Table[A330794[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Sep 20 2023 *)
PROG
(Sage) # uses[riordan_array from A256893]
Jacobsthal = (2*x^2 - 1)/((x + 1)*(2*x - 1))
riordan_array(Jacobsthal, Jacobsthal, 10).inverse()
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Jan 03 2020
STATUS
approved