login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Riordan array ((1-x)/(1-2*x-x^2), x*(1+x)/(1-2*x-x^2)).
0

%I #8 Feb 22 2013 14:40:35

%S 1,1,1,3,4,1,7,13,7,1,17,40,32,10,1,41,117,124,60,13,1,99,332,437,286,

%T 97,16,1,239,921,1447,1193,553,143,19,1,577,2512,4584,4556,2682,952,

%U 198,22,1,1393,6761,14048,16336,11666,5282,1510,262,25,1

%N Riordan array ((1-x)/(1-2*x-x^2), x*(1+x)/(1-2*x-x^2)).

%C Triangle T(n,k), 0<=k<=n, read by rows, given by (1, 2, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

%C Product of A122542 and A007318 (Pascal's triangle) as lower triangular matrices .

%F T(n,k) = 2*T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-2,k-1), T(0,0) = T(1,0) = T(1,1) = 1 and T(n,k) = 0 if k<0 or if k>n.

%F G.f.: (1-x)/(1-2*x-y*x-x^2-y*x^2).

%F Sum_{k, 0<=k<=n} T(n,k)*x^k = A000007(n), A001333(n), A104934(n), A122958(n), A122690(n), A091928(n) for x = -1, 0, 1, 2, 3, 4 respectively.

%e Triangle begins :

%e 1

%e 1, 1

%e 3, 4, 1

%e 7, 13, 7, 1

%e 17, 40, 32, 10, 1

%e 41, 117, 124, 60, 13, 1

%e 99, 332, 437, 286, 97, 16, 1

%e 239, 921, 1447, 1193, 553, 143, 19, 1

%e 577, 2512, 4584, 4556, 2682, 952, 198, 22, 1

%e 1393, 6761, 14048, 16336, 11666, 5282, 1510, 262, 25, 1

%Y Cf. Columns :A001333, A119915, Diagonals : A000012, A016777, Antidiagonal sums : A077995

%K easy,nonn,tabl

%O 0,4

%A _Philippe Deléham_, Mar 26 2012