login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163606
a(n) = ((3 + 2*sqrt(2))*(3 + sqrt(2))^n + (3 - 2*sqrt(2))*(3 - sqrt(2))^n)/2.
3
3, 13, 57, 251, 1107, 4885, 21561, 95171, 420099, 1854397, 8185689, 36133355, 159500307, 704068357, 3107907993, 13718969459, 60558460803, 267317978605, 1179998646009, 5208766025819, 22992605632851, 101494271616373
OFFSET
0,1
COMMENTS
Binomial transform of A048580. Inverse binomial transform of A163604.
For n >= 1, a(n-1) is the number of generalized compositions of n when there are 2^(i-1)+1 different types of i, (i=1,2,...). - Milan Janjic, Sep 24 2010
FORMULA
a(n) = 6*a(n-1) - 7*a(n-2) for n > 1; a(0) = 3, a(1) = 13.
G.f.: (3-5*x)/(1-6*x+7*x^2).
E.g.f.: exp(3*x)*( 3*cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x) ). - G. C. Greubel, Jul 29 2017
MATHEMATICA
LinearRecurrence[{6, -7}, {3, 13}, 40] (* Harvey P. Dale, Dec 24 2011 *)
PROG
(Magma) Z<x>:= PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((3+2*r)*(3+r)^n+(3-2*r)*(3-r)^n)/2: n in [0..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 07 2009
(PARI) x='x+O('x^50); Vec((3-5*x)/(1-6*x+7*x^2)) \\ G. C. Greubel, Jul 29 2017
CROSSREFS
Sequence in context: A049086 A010921 A275634 * A115968 A256939 A005827
KEYWORD
nonn
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Aug 01 2009
EXTENSIONS
Edited and extended beyond a(5) by Klaus Brockhaus, Aug 07 2009
STATUS
approved