login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A163604 a(n) = ((3+2*sqrt(2))*(4+sqrt(2))^n + (3-2*sqrt(2))*(4-sqrt(2))^n)/2. 4
3, 16, 86, 464, 2508, 13568, 73432, 397504, 2151984, 11650816, 63078752, 341518592, 1849046208, 10011109376, 54202228096, 293462293504, 1588867154688, 8602465128448, 46575580861952, 252170135097344, 1365302948711424, 7392041698328576, 40022092304668672 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Binomial transform of A163606. Inverse binomial transform of A163605.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (8,-14).

FORMULA

a(n) = 8*a(n-1)-14*a(n-2) for n > 1; a(0) = 3, a(1) = 16.

G.f.: (3-8*x)/(1-8*x+14*x^2).

E.g.f.: exp(4*x)*( 3*cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x) ). -  G. C. Greubel, Jul 29 2017

MATHEMATICA

LinearRecurrence[{8, -14}, {3, 16}, 50] (* G. C. Greubel, Jul 29 2017 *)

PROG

(MAGMA) Z<x>:= PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((3+2*r)*(4+r)^n+(3-2*r)*(4-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 07 2009

(PARI) x='x+O('x^50); Vec((3-8*x)/(1-8*x+14*x^2)) \\ G. C. Greubel, Jul 29 2017

CROSSREFS

Cf. A163606, A163605.

Sequence in context: A056360 A278681 A224869 * A151329 A026111 A026330

Adjacent sequences:  A163601 A163602 A163603 * A163605 A163606 A163607

KEYWORD

nonn

AUTHOR

Al Hakanson (hawkuu(AT)gmail.com), Aug 01 2009

EXTENSIONS

Edited and extended beyond a(5) by Klaus Brockhaus and R. J. Mathar, Aug 07 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 19 16:28 EST 2018. Contains 299356 sequences. (Running on oeis4.)