login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163604
a(n) = ((3+2*sqrt(2))*(4+sqrt(2))^n + (3-2*sqrt(2))*(4-sqrt(2))^n)/2.
4
3, 16, 86, 464, 2508, 13568, 73432, 397504, 2151984, 11650816, 63078752, 341518592, 1849046208, 10011109376, 54202228096, 293462293504, 1588867154688, 8602465128448, 46575580861952, 252170135097344, 1365302948711424, 7392041698328576, 40022092304668672
OFFSET
0,1
COMMENTS
Binomial transform of A163606. Inverse binomial transform of A163605.
FORMULA
a(n) = 8*a(n-1)-14*a(n-2) for n > 1; a(0) = 3, a(1) = 16.
G.f.: (3-8*x)/(1-8*x+14*x^2).
E.g.f.: exp(4*x)*( 3*cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x) ). - G. C. Greubel, Jul 29 2017
MATHEMATICA
LinearRecurrence[{8, -14}, {3, 16}, 50] (* G. C. Greubel, Jul 29 2017 *)
PROG
(Magma) Z<x>:= PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((3+2*r)*(4+r)^n+(3-2*r)*(4-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 07 2009
(PARI) x='x+O('x^50); Vec((3-8*x)/(1-8*x+14*x^2)) \\ G. C. Greubel, Jul 29 2017
CROSSREFS
Sequence in context: A056360 A278681 A224869 * A151329 A356402 A378334
KEYWORD
nonn
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Aug 01 2009
EXTENSIONS
Edited and extended beyond a(5) by Klaus Brockhaus and R. J. Mathar, Aug 07 2009
STATUS
approved