login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163605
a(n) = ((3+2*sqrt(2))*(5+sqrt(2))^n + (3-2*sqrt(2))*(5-sqrt(2))^n)/2.
4
3, 19, 121, 773, 4947, 31691, 203129, 1302397, 8352003, 53564899, 343552921, 2203536533, 14133648147, 90655141211, 581477504729, 3729706799437, 23923085385603, 153447597468979, 984245010820921, 6313155366422693
OFFSET
0,1
COMMENTS
Binomial transform of A163604.
FORMULA
a(n) = 10*a(n-1)-23*a(n-2) for n > 1; a(0) = 3, a(1) = 19.
G.f.: (3-11*x)/(1-10*x+23*x^2).
E.g.f.: exp(5*x)*( 3*cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x) ). - G. C. Greubel, Jul 29 2017
MATHEMATICA
LinearRecurrence[{10, -23}, {3, 19}, 50] (* G. C. Greubel, Jul 29 2017 *)
PROG
(Magma) Z<x>:= PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((3+2*r)*(5+r)^n+(3-2*r)*(5-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 07 2009
(PARI) x='x+O('x^50); Vec((3-11*x)/(1-10*x+23*x^2)) \\ G. C. Greubel, Jul 29 2017
CROSSREFS
Cf. A163604.
Sequence in context: A340644 A020073 A138977 * A294252 A294253 A293840
KEYWORD
nonn
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Aug 01 2009
EXTENSIONS
Edited and extended beyond a(5) by Klaus Brockhaus, Aug 07 2009
STATUS
approved