login
A340644
The number of vertices on a Reuleaux triangle formed by the straight line segments mutually connecting all vertices and all points that divide the sides into n equal parts.
6
3, 19, 120, 442, 1332, 2863, 5871, 10171, 17358, 26518, 40590, 57757, 81735, 110209, 148158, 192184, 248772, 313105, 393429, 483283, 593490, 715528, 861660, 1022281, 1211811, 1418515, 1659108, 1919842, 2220204, 2543527, 2912751, 3308305, 3755922, 4233730, 4770150, 5340529, 5977071
OFFSET
1,1
COMMENTS
The terms are from numeric computation - no formula for a(n) is currently known.
LINKS
Scott R. Shannon, Vertices for n = 2.
Scott R. Shannon, Vertices for n = 3.
Scott R. Shannon, Vertices for n = 4.
Scott R. Shannon, Vertices for n = 5.
Scott R. Shannon, Vertices for n = 6.
Scott R. Shannon, Vertices for n = 10.
Scott R. Shannon, Vertices for n = 11.
Wikipedia, Reuleaux triangle.
CROSSREFS
Cf. A340639 (regions), A340613 (edges), A340614 (n-gons), A007678, A092867.
Sequence in context: A139176 A302443 A126809 * A020073 A138977 A163605
KEYWORD
nonn
AUTHOR
STATUS
approved