Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Sep 08 2022 08:45:46
%S 3,16,86,464,2508,13568,73432,397504,2151984,11650816,63078752,
%T 341518592,1849046208,10011109376,54202228096,293462293504,
%U 1588867154688,8602465128448,46575580861952,252170135097344,1365302948711424,7392041698328576,40022092304668672
%N a(n) = ((3+2*sqrt(2))*(4+sqrt(2))^n + (3-2*sqrt(2))*(4-sqrt(2))^n)/2.
%C Binomial transform of A163606. Inverse binomial transform of A163605.
%H G. C. Greubel, <a href="/A163604/b163604.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (8,-14).
%F a(n) = 8*a(n-1)-14*a(n-2) for n > 1; a(0) = 3, a(1) = 16.
%F G.f.: (3-8*x)/(1-8*x+14*x^2).
%F E.g.f.: exp(4*x)*( 3*cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x) ). - _G. C. Greubel_, Jul 29 2017
%t LinearRecurrence[{8, -14}, {3, 16}, 50] (* _G. C. Greubel_, Jul 29 2017 *)
%o (Magma) Z<x>:= PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((3+2*r)*(4+r)^n+(3-2*r)*(4-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // _Klaus Brockhaus_, Aug 07 2009
%o (PARI) x='x+O('x^50); Vec((3-8*x)/(1-8*x+14*x^2)) \\ _G. C. Greubel_, Jul 29 2017
%Y Cf. A163606, A163605.
%K nonn
%O 0,1
%A Al Hakanson (hawkuu(AT)gmail.com), Aug 01 2009
%E Edited and extended beyond a(5) by _Klaus Brockhaus_ and _R. J. Mathar_, Aug 07 2009