login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163609
a(n) = ((5 + 2*sqrt(2))*(3 + sqrt(2))^n + (5 - 2*sqrt(2))*(3 - sqrt(2))^n)/2.
4
5, 19, 79, 341, 1493, 6571, 28975, 127853, 564293, 2490787, 10994671, 48532517, 214232405, 945666811, 4174374031, 18426576509, 81338840837, 359047009459, 1584910170895, 6996131959157, 30882420558677, 136321599637963
OFFSET
0,1
COMMENTS
Binomial transform of A163608. Third binomial transform of A163888. Inverse binomial transform of A163610.
FORMULA
a(n) = 6*a(n-1) - 7*a(n-2) for n > 1; a(0) = 5, a(1) = 19.
G.f.: (5-11*x)/(1-6*x+7*x^2).
a(n) = 5*A081179(n+1) - 11*A081179(n). - R. J. Mathar, Nov 08 2013
E.g.f.: exp(3*x)*( 5*cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x) ). - G. C. Greubel, Jul 29 2017
MATHEMATICA
LinearRecurrence[{6, -7}, {5, 19}, 50] (* G. C. Greubel, Jul 29 2017 *)
PROG
(Magma) Z<x>:= PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((5+2*r)*(3+r)^n+(5-2*r)*(3-r)^n)/2: n in [0..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 06 2009
(PARI) x='x+O('x^50); Vec((5-11*x)/(1-6*x+7*x^2)) \\ G. C. Greubel, Jul 29 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Aug 01 2009
EXTENSIONS
Edited and extended beyond a(5) by Klaus Brockhaus, Aug 06 2009
STATUS
approved