OFFSET
0,1
COMMENTS
LINKS
Harvey P. Dale, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (8,-14).
FORMULA
a(n) = 8*a(n-1) - 14*a(n-2) for n > 1; a(0) = 5, a(1) = 24.
G.f.: (5-16*x)/(1-8*x+14*x^2).
E.g.f.: exp(4*x)*( 5*cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x) ). - G. C. Greubel, Jul 29 2017
MATHEMATICA
LinearRecurrence[{8, -14}, {5, 24}, 30] (* Harvey P. Dale, May 29 2016 *)
PROG
(Magma) Z<x>:= PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((5+2*r)*(4+r)^n+(5-2*r)*(4-r)^n)/2: n in [0..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 06 2009
(PARI) x='x+O('x^50); Vec((5-16*x)/(1-8*x+14*x^2)) \\ G. C. Greubel, Jul 29 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Aug 01 2009
EXTENSIONS
Edited and extended beyond a(5) by Klaus Brockhaus, Aug 06 2009
STATUS
approved