login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163888
a(n) = 2*a(n-2) for n > 2; a(1) = 5, a(2) = 4.
6
5, 4, 10, 8, 20, 16, 40, 32, 80, 64, 160, 128, 320, 256, 640, 512, 1280, 1024, 2560, 2048, 5120, 4096, 10240, 8192, 20480, 16384, 40960, 32768, 81920, 65536, 163840, 131072, 327680, 262144, 655360, 524288, 1310720, 1048576, 2621440, 2097152, 5242880
OFFSET
1,1
COMMENTS
Interleaving of A020714 and A000079 without initial terms 1 and 2.
Binomial transform is A163607, second binomial transform is A163608, third binomial transform is A163609, fourth binomial transform is A163610, fifth binomial transform is A163611.
FORMULA
a(n) = (7 - 3*(-1)^n)*2^((2*n-5+(-1)^n)/4).
G.f.: x*(5+4*x)/(1-2*x^2).
MATHEMATICA
Transpose[NestList[{Last[#], 2First[#]}&, {5, 4}, 40]] [[1]] (* Harvey P. Dale, Mar 14 2011 *)
LinearRecurrence[{0, 2}, {5, 4}, 41] (* Ray Chandler, Aug 14 2015 *)
PROG
(Magma) [ n le 2 select 6-n else 2*Self(n-2): n in [1..41] ];
(PARI) x='x+O('x^50); vec(x*(5+4*x)/(1-2*x^2)) \\ G. C. Greubel, Aug 07 2017
CROSSREFS
Cf. A020714 (5*2^n), A000079 (powers of 2), A163607, A163608, A163609, A163610, A163611.
Sequence in context: A286461 A152064 A088482 * A363323 A309545 A285105
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Aug 06 2009
STATUS
approved