login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309545
Sum of the odd parts in the partitions of n into 5 parts.
0
0, 0, 0, 0, 0, 5, 4, 10, 12, 27, 32, 62, 76, 132, 158, 244, 290, 425, 504, 698, 824, 1107, 1292, 1679, 1948, 2476, 2842, 3527, 4034, 4941, 5610, 6751, 7626, 9064, 10180, 11978, 13384, 15595, 17350, 20020, 22186, 25420, 28054, 31909, 35094, 39689, 43486
OFFSET
0,6
FORMULA
a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-1)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} (i * (i mod 2) + j * (j mod 2) + k * (k mod 2) + l * (l mod 2) + (n-i-j-k-l) * ((n-i-j-k-l) mod 2)).
EXAMPLE
The partitions of n into 5 parts for n = 10, 11, ..
1+1+1+1+10
1+1+1+2+9
1+1+1+3+8
1+1+1+4+7
1+1+1+5+6
1+1+1+1+9 1+1+2+2+8
1+1+1+2+8 1+1+2+3+7
1+1+1+3+7 1+1+2+4+6
1+1+1+4+6 1+1+2+5+5
1+1+1+5+5 1+1+3+3+6
1+1+1+1+8 1+1+2+2+7 1+1+3+4+5
1+1+1+2+7 1+1+2+3+6 1+1+4+4+4
1+1+1+3+6 1+1+2+4+5 1+2+2+2+7
1+1+1+1+7 1+1+1+4+5 1+1+3+3+5 1+2+2+3+6
1+1+1+2+6 1+1+2+2+6 1+1+3+4+4 1+2+2+4+5
1+1+1+3+5 1+1+2+3+5 1+2+2+2+6 1+2+3+3+5
1+1+1+1+6 1+1+1+4+4 1+1+2+4+4 1+2+2+3+5 1+2+3+4+4
1+1+1+2+5 1+1+2+2+5 1+1+3+3+4 1+2+2+4+4 1+3+3+3+4
1+1+1+3+4 1+1+2+3+4 1+2+2+2+5 1+2+3+3+4 2+2+2+2+6
1+1+2+2+4 1+1+3+3+3 1+2+2+3+4 1+3+3+3+3 2+2+2+3+5
1+1+2+3+3 1+2+2+2+4 1+2+3+3+3 2+2+2+2+5 2+2+2+4+4
1+2+2+2+3 1+2+2+3+3 2+2+2+2+4 2+2+2+3+4 2+2+3+3+4
2+2+2+2+2 2+2+2+2+3 2+2+2+3+3 2+2+3+3+3 2+3+3+3+3
--------------------------------------------------------------------------
n | 10 11 12 13 14 ...
--------------------------------------------------------------------------
a(n) | 32 62 76 132 158 ...
--------------------------------------------------------------------------
- Wesley Ivan Hurt, Sep 12 2019
MATHEMATICA
Table[Sum[Sum[Sum[Sum[i * Mod[i, 2] + j * Mod[j, 2] + k * Mod[k, 2] + l * Mod[l, 2] + (n - i - j - k - l) * Mod[n - i - j - k - l, 2], {i, j, Floor[(n - j - k - l)/2]}], {j, k, Floor[(n - k - l)/3]}], {k, l, Floor[(n - l)/4]}], {l, Floor[n/5]}], {n, 0, 50}]
CROSSREFS
Sequence in context: A088482 A163888 A363323 * A285105 A360682 A089520
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Aug 06 2019
STATUS
approved