Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Jan 05 2025 19:51:34
%S 3,13,57,250,1097,4814,21126,92711,406861,1785505,7835669,34386747,
%T 150905861,662248712,2906271193,12754139184,55971399613,245629871954,
%U 1077943993063,4730545364606,20759946333583,91104796287932,399812397069577,1754572309731352
%N Shallit sequence S(3,13), a(n)=[ a(n-1)^2/a(n-2)+1 ].
%C Matches the sequence A275634 with g.f. ( 3-2*x-2*x^2 ) / ( 1-5*x+2*x^2+3*x^3 ) for n<=9, but is then different. - _R. J. Mathar_, Feb 11 2016
%H Colin Barker, <a href="/A010921/b010921.txt">Table of n, a(n) for n = 0..1000</a>
%H D. W. Boyd, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa34/aa3444.pdf">Some integer sequences related to the Pisot sequences</a>, Acta Arithmetica, 34 (1979), 295-305.
%H D. W. Boyd, <a href="https://www.researchgate.net/profile/David_Boyd7/publication/262181133_Linear_recurrence_relations_for_some_generalized_Pisot_sequences_-_annotated_with_corrections_and_additions/links/00b7d536d49781037f000000.pdf">Linear recurrence relations for some generalized Pisot sequences</a>, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
%H Jeffrey Shallit, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/29-1/elementary29-1.pdf">Problem B-686</a>, Fib. Quart., 29 (1991), 85.
%p A010921 := proc(n)
%p option remember;
%p if n <= 1 then
%p op(n+1,[3,13]) ;
%p else
%p a := procname(n-1)^2/procname(n-2) ;
%p floor(1+a) ;
%p end if;
%p end proc: # _R. J. Mathar_, Feb 11 2016
%t RecurrenceTable[{a[0]==3,a[1]==13,a[n]==Floor[a[n-1]^2/a[n-2]+1]}, a[n], {n,25}] (* _Harvey P. Dale_, Oct 24 2011 *)
%o (PARI) A010921(n,a=[3,13])={for(n=2,if(type(n)=="t_VEC",n[1],n),a=concat(a,a[n]^2\a[n-1]+1));if(type(n)=="t_VEC",a,a[n+1])} \\ Use A010921([n]) to get the vector [a(0),...,a(n)] \\ _M. F. Hasler_, Feb 11 2016
%o (PARI) pisotS(nmax, a1, a2) = {
%o a=vector(nmax); a[1]=a1; a[2]=a2;
%o for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]+1));
%o a
%o }
%o pisotS(50, 3, 13) \\ _Colin Barker_, Aug 09 2016
%Y Cf. A008776, A275634.
%K nonn
%O 0,1
%A _Simon Plouffe_