login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A167816 Numerator of x(n) = x(n-1) + x(n-2), x(0)=0, x(1)=1/3; denominator=A167817. 7
0, 1, 1, 2, 1, 5, 8, 13, 7, 34, 55, 89, 48, 233, 377, 610, 329, 1597, 2584, 4181, 2255, 10946, 17711, 28657, 15456, 75025, 121393, 196418, 105937, 514229, 832040, 1346269, 726103, 3524578, 5702887, 9227465, 4976784, 24157817, 39088169, 63245986, 34111385 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Wikipedia, Fibonacci number

Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 7, 0, 0, 0, -1).

FORMULA

a(n) = (a(n-1)*A093148(n+2) + a(n-2)*A093148(n+1))/A093148(n-1) for n>1.

a(4*n) = A004187(n) = (a(4*n-1) + a(4*n-2))/3;

a(4*n+1) = A033889(n) = 3*a(4*n-1) + a(4*n-2);

a(4*n+2) = A033890(n) = a(4*n-1) + 3*a(4*n-2);

a(4*n+3) = A033891(n) = a(4*n-1) + a(4*n-2).

Numerator of Fibonacci(n) / Fibonacci(2n-4) for n>=3. - Gary Detlefs, Dec 20 2010

MATHEMATICA

Numerator[LinearRecurrence[{1, 1}, {0, 1/3}, 40]] (* Harvey P. Dale, Dec 07 2014 *)

LinearRecurrence[{0, 0, 0, 7, 0, 0, 0, -1}, {0, 1, 1, 2, 1, 5, 8, 13}, 39] (* Ray Chandler, Aug 03 2015 *)

PROG

(MAGMA) [0, 1, 1] cat [Numerator(Fibonacci(n)/Fibonacci(2*n-4)): n in [3..40]]; // Vincenzo Librandi, Jun 28 2016

CROSSREFS

Cf. A000045, A167808.

Sequence in context: A316293 A193180 A201743 * A316292 A222542 A318052

Adjacent sequences:  A167813 A167814 A167815 * A167817 A167818 A167819

KEYWORD

frac,nonn

AUTHOR

Reinhard Zumkeller, Nov 13 2009

EXTENSIONS

Definition corrected by D. S. McNeil, May 09 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 11 18:50 EST 2019. Contains 329031 sequences. (Running on oeis4.)