login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167816
Numerator of x(n) = x(n-1) + x(n-2), x(0)=0, x(1)=1/3; denominator=A167817.
7
0, 1, 1, 2, 1, 5, 8, 13, 7, 34, 55, 89, 48, 233, 377, 610, 329, 1597, 2584, 4181, 2255, 10946, 17711, 28657, 15456, 75025, 121393, 196418, 105937, 514229, 832040, 1346269, 726103, 3524578, 5702887, 9227465, 4976784, 24157817, 39088169, 63245986, 34111385
OFFSET
0,4
LINKS
FORMULA
a(n) = (a(n-1)*A093148(n+2) + a(n-2)*A093148(n+1))/A093148(n-1) for n>1.
a(4*n) = A004187(n) = (a(4*n-1) + a(4*n-2))/3;
a(4*n+1) = A033889(n) = 3*a(4*n-1) + a(4*n-2);
a(4*n+2) = A033890(n) = a(4*n-1) + 3*a(4*n-2);
a(4*n+3) = A033891(n) = a(4*n-1) + a(4*n-2).
Numerator of Fibonacci(n) / Fibonacci(2n-4) for n>=3. - Gary Detlefs, Dec 20 2010
MATHEMATICA
Numerator[LinearRecurrence[{1, 1}, {0, 1/3}, 40]] (* Harvey P. Dale, Dec 07 2014 *)
LinearRecurrence[{0, 0, 0, 7, 0, 0, 0, -1}, {0, 1, 1, 2, 1, 5, 8, 13}, 39] (* Ray Chandler, Aug 03 2015 *)
PROG
(Magma) [0, 1, 1] cat [Numerator(Fibonacci(n)/Fibonacci(2*n-4)): n in [3..40]]; // Vincenzo Librandi, Jun 28 2016
CROSSREFS
Sequence in context: A377363 A193180 A201743 * A316292 A222542 A318052
KEYWORD
frac,nonn
AUTHOR
Reinhard Zumkeller, Nov 13 2009
EXTENSIONS
Definition corrected by D. S. McNeil, May 09 2010
STATUS
approved