login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167819
Numbers with a distinct frequency for each ternary digit.
4
9, 10, 12, 14, 16, 17, 18, 20, 22, 23, 24, 25, 27, 31, 37, 39, 41, 43, 49, 53, 54, 62, 67, 71, 74, 77, 78, 79, 81, 82, 84, 85, 90, 91, 93, 94, 108, 109, 111, 112, 117, 118, 120, 122, 124, 125, 130, 131, 133, 134, 148, 149, 151, 152, 157, 158, 160, 161, 162, 164, 168
OFFSET
1,1
COMMENTS
The smallest number in the sequence that actually contains all 3 ternary digits is 248 = 100012_3. [Corrected by M. F. Hasler, Nov 02 2012]
The number 28 is in A031948 but not in this sequence A167819. This sequence is infinite, e.g. all powers 3^k, k>1 are member. Digit frequencies are [2,1,0] for the first 12 terms (with 3 digits in base 3, from 100[3] to 221[3]), then [3,1,0] for the next 16 terms with 4 digits in base 3 (from 1000[3] to 2221[3]), then [4,1,0] and [3,2,0] (5 digits in base 3, from 10000[3] to 22221[3]), followed by [5,1,0] or [4,2,0] or [3,2,1] (6 digits in base-3, from 10000[3] to 22221[3]), etc. - M. F. Hasler, Nov 02 2012
EXAMPLE
9 = 100_3 is in the sequence, as it has 2 0's, 1 1, and 0 2's.
1 is not in the sequence, as it has the same number (0) of 0's and 2's.
MATHEMATICA
Select[Range[168], Length[Union[DigitCount[ #, 3]]]==3&] [From Zak Seidov, Nov 13 2009]
PROG
(PARI) /* In PARI versions < 2.6, define: */ digits(n, b=10)=local(r); r=[]; while(n>0, r=concat([n%b], r); n\=b); r
is_A167819(n)=local(d=digits(n, 3), v=vector(3)); for(k=1, #d, v[d[k]+1]++); #Set(v)==3
for(n=1, 250, if(is_A167819(n), print1(n", ")))
CROSSREFS
Sequence in context: A295743 A356659 A214602 * A120185 A076364 A175223
KEYWORD
base,nonn,fini
AUTHOR
STATUS
approved