login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356659
Numbers k that can be written as the sum of 9 divisors of k (not necessarily distinct).
8
9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 35, 36, 39, 40, 42, 44, 45, 48, 50, 51, 52, 54, 55, 56, 57, 60, 63, 64, 65, 66, 68, 70, 72, 75, 76, 77, 78, 80, 81, 84, 85, 88, 90, 92, 96, 98, 99, 100, 102, 104, 105, 108, 110, 112, 114, 117, 120, 125
OFFSET
1,1
COMMENTS
If k is in the sequence then so is k*m. - David A. Corneth, Oct 08 2022
LINKS
FORMULA
a(n + t) = a(n) + s for some finite t and s. - David A. Corneth, Oct 08 2022
EXAMPLE
14 is in the sequence since 14 = 2+2+2+2+2+1+1+1+1, where each summand divides 14.
PROG
(PARI) upto(n) = { my(v = vector(n, i, -1), t = 0); for(i = 1, n, if(v[i] == -1, print1(i", "); v[i] = is(i, 9); if(v[i] == 1, for(j = 2, n \ i, v[i*j] = 1; ) ) ); ); select(x->x >= 1, v, 1); }
is(n, {qd = 10}) = { my(d = divisors(n)); d = d[^#d]; forvec(x = vector(qd-1, i, [1, #d]), s = sum(i = 1, qd-1, d[x[i]]); if(n - s >= d[x[qd - 1]], if(n % (n - s) == 0, return(1); ) ) , 1 ); 0 } \\ David A. Corneth, Oct 08 2022
CROSSREFS
Numbers k that can be written as the sum of j divisors of k (not necessarily distinct) for j=1..10: A000027 (j=1), A299174 (j=2), A355200 (j=3), A354591 (j=4), A355641 (j=5), A356609 (j=6), A356635 (j=7), A356657 (j=8), this sequence (j=9), A356660 (j=10).
Sequence in context: A119956 A059102 A295743 * A214602 A167819 A120185
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Aug 20 2022
STATUS
approved