OFFSET
1,1
COMMENTS
Terms are even. Proof by contradiction. Suppose m = a(n) is odd. Then each divisor is odd. Adding 8 odd numbers gives an even number. A contradiction. - David A. Corneth, Sep 02 2022
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000
EXAMPLE
14 is in the sequence since 14 = 2+2+2+2+2+2+1+1, where each summand divides 14.
PROG
(PARI) isok(k) = my(d=divisors(k)); forpart(p=k, if (setintersect(d, Set(p)) == Set(p), return(1)), , [8, 8]); \\ Michel Marcus, Aug 21 2022
(PARI) is(n) = if(n % 2 == 1, return(0)); my(d = divisors(n)); forvec(x = vector(8, i, [1, #d-1]), s=sum(i=1, #x, d [x[i]]); if(n == s, print(vector(#x, j, d[x[j]])); return(1)), 1); 0 \\ David A. Corneth, Aug 21 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Aug 20 2022
STATUS
approved