login
A356609
Numbers k that can be written as the sum of 6 divisors of k (not necessarily distinct).
9
6, 8, 10, 12, 14, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 44, 48, 50, 52, 54, 56, 60, 64, 66, 70, 72, 78, 80, 84, 88, 90, 96, 98, 100, 102, 104, 108, 110, 112, 114, 120, 126, 128, 130, 132, 136, 138, 140, 144, 150, 152, 154, 156, 160, 162, 168, 170, 174, 176, 180, 182, 184, 186, 190
OFFSET
1,1
COMMENTS
Numbers divisible by at least one of 6, 8, 10, 14, 44, 52. For proof see link. - Robert Israel, Sep 02 2022
The asymptotic density of this sequence is 483/1430. - Amiram Eldar, Aug 08 2023
EXAMPLE
18 is in the sequence since 18 = 9+2+2+2+2+1, where each summand divides 18.
MAPLE
filter:= n-> ormap(t -> n mod t = 0, [6, 8, 10, 14, 44, 52]):
select(filter, [$1..200]); # Robert Israel, Sep 02 2022
MATHEMATICA
q[n_, k_] := AnyTrue[Tuples[Divisors[n], k], Total[#] == n &]; Select[Range[200], q[#, 6] &] (* Amiram Eldar, Aug 19 2022 *)
PROG
(PARI) isok(k) = my(d=divisors(k)); forpart(p=k, if (setintersect(d, Set(p)) == Set(p), return(1)), , [6, 6]); \\ Michel Marcus, Aug 19 2022
CROSSREFS
Numbers k that can be written as the sum of j divisors of k (not necessarily distinct) for j=1..10: A000027 (j=1), A299174 (j=2), A355200 (j=3), A354591 (j=4), A355641 (j=5), this sequence (j=6), A356635 (j=7), A356657 (j=8), A356659 (j=9), A356660 (j=10).
Sequence in context: A060652 A020739 A064466 * A026286 A187085 A303580
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Aug 18 2022
STATUS
approved