login
A356607
Number of strict integer partitions of n with at least one neighborless part.
10
0, 1, 1, 1, 2, 2, 3, 4, 6, 6, 9, 11, 13, 17, 20, 24, 30, 36, 41, 52, 60, 71, 84, 100, 114, 137, 158, 183, 214, 248, 283, 330, 379, 432, 499, 570, 648, 742, 846, 955, 1092, 1234, 1395, 1580, 1786, 2005, 2270, 2548, 2861, 3216, 3610, 4032, 4526, 5055, 5642, 6304, 7031, 7820, 8720, 9694
OFFSET
0,5
COMMENTS
A part x is neighborless if neither x - 1 nor x + 1 are parts.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..5000 (first 101 terms from Lucas A. Brown)
Lucas A. Brown, A356607.py
EXAMPLE
The a(0) = 0 through a(9) = 6 partitions:
. (1) (2) (3) (4) (5) (6) (7) (8) (9)
(31) (41) (42) (52) (53) (63)
(51) (61) (62) (72)
(421) (71) (81)
(431) (531)
(521) (621)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Function[ptn, UnsameQ@@ptn&&Or@@Table[!MemberQ[ptn, x-1]&&!MemberQ[ptn, x+1], {x, Union[ptn]}]]]], {n, 0, 30}]
CROSSREFS
This is the strict case of A356235 and A356236.
The complement is counted by A356606, non-strict A355393 and A355394.
A000041 counts integer partitions, strict A000009.
A000837 counts relatively prime partitions, ranked by A289509.
A007690 counts partitions with no singletons, complement A183558.
Sequence in context: A046934 A093594 A008806 * A366843 A370805 A238860
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 26 2022
EXTENSIONS
a(31)-a(59) from Lucas A. Brown, Sep 09 2022
STATUS
approved