login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366843
Number of integer partitions of n into odd, relatively prime parts.
12
1, 1, 1, 1, 2, 2, 3, 4, 6, 6, 9, 11, 13, 17, 21, 23, 32, 37, 42, 53, 62, 70, 88, 103, 116, 139, 164, 184, 220, 255, 283, 339, 390, 435, 511, 578, 653, 759, 863, 963, 1107, 1259, 1401, 1609, 1814, 2015, 2303, 2589, 2878, 3259, 3648, 4058, 4580, 5119, 5672, 6364
OFFSET
0,5
EXAMPLE
The a(1) = 1 through a(8) = 6 partitions:
(1) (11) (111) (31) (311) (51) (331) (53)
(1111) (11111) (3111) (511) (71)
(111111) (31111) (3311)
(1111111) (5111)
(311111)
(11111111)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], #=={}||And@@OddQ/@#&&GCD@@#==1&]], {n, 0, 30}]
PROG
(Python)
from math import gcd
from sympy.utilities.iterables import partitions
def A366843(n): return sum(1 for p in partitions(n) if all(d&1 for d in p) and gcd(*p)==1) # Chai Wah Wu, Oct 30 2023
CROSSREFS
Allowing even parts gives A000837.
The strict case is A366844, with evens A078374.
The complement is counted by A366852, with evens A018783.
The pairwise coprime version is A366853, with evens A051424.
A000041 counts integer partitions, strict A000009 (also into odds).
A000740 counts relatively prime compositions.
A168532 counts partitions by gcd.
A366842 counts partitions whose odd parts have a common divisor > 1.
Sequence in context: A093594 A008806 A356607 * A370805 A238860 A144367
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 28 2023
STATUS
approved