OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
David Beckwith, Vadim Ponomarenko and Rob Pratt, Building Two Piles of Equal Height: 11183, The American Mathematical Monthly, 114 (2007), 551-552.
Index entries for linear recurrences with constant coefficients, signature (1,1,0,-1,-1,1).
FORMULA
From R. J. Mathar, Nov 08 2010: (Start)
a(n) = (16*A131713(n) +29 +24*n +6*n^2 +27*(-1)^n)/72.
G.f.: (1 -x +x^2)/( (1+x)*(1+x+x^2)*(1-x)^3 ). (End)
a(n) = floor((6*n^2+24*n+61+27*(-1)^n)/72). - Tani Akinari, Jul 24 2013
MAPLE
seq(coeff(series((1+x^3)/((1-x^2)^2*(1-x^3)), x, n+1), x, n), n = 0..70); # G. C. Greubel, Sep 12 2019
MATHEMATICA
CoefficientList[Series[(1+x^3)/((1-x^2)^2*(1-x^3)), {x, 0, 70}], x] (* or *) LinearRecurrence[{1, 1, 0, -1, -1, 1}, {1, 0, 2, 2, 3, 4}, 70] (* G. C. Greubel, Sep 12 2019 *)
PROG
(PARI) Vec((1+x^3)/((1-x^2)^2*(1-x^3)) +O(x^70)) \\ Charles R Greathouse IV, Sep 26 2012; modified by G. C. Greubel, Sep 12 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 70); Coefficients(R!( (1+x^3)/((1-x^2)^2*(1-x^3)) )); // G. C. Greubel, Sep 12 2019
(Sage)
def A008806_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1+x^3)/((1-x^2)^2*(1-x^3))).list()
A008806_list(70) # G. C. Greubel, Sep 12 2019
(GAP) a:=[1, 0, 2, 2, 3, 4];; for n in [7..70] do a[n]:=a[n-1]+a[n-2]-a[n-4]-a[n-5]+a[n-6]; od; a; # G. C. Greubel, Sep 12 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Terms a(52) onward added by G. C. Greubel, Sep 12 2019
STATUS
approved