login
A354591
Numbers k that can be written as the sum of 4 divisors of k (not necessarily distinct).
11
4, 6, 8, 10, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 44, 48, 50, 52, 54, 56, 60, 64, 66, 68, 70, 72, 76, 78, 80, 84, 88, 90, 92, 96, 100, 102, 104, 108, 110, 112, 114, 116, 120, 124, 126, 128, 130, 132, 136, 138, 140, 144, 148, 150, 152, 156, 160, 162, 164, 168, 170, 172
OFFSET
1,1
COMMENTS
All terms are even. - Robert Israel, Aug 31 2022
Is it true that a(n) = 2*A080671(n)? - Michel Marcus, Sep 01 2022 (True for n <= 10000. - N. J. A. Sloane, Sep 01 2022)
This is true. In other words, k is in the sequence if and only if k is even and divisible by 3, 4 or 5. Proof: the positive integer solutions of 1/a + 1/b + 1/c + 1/d = 1 can be enumerated explicitly, and each contains at least one even number and at least one divisible by 3, 4 or 5. Of course k = k/a + k/b + k/c + k/d if and only if 1 = 1/a + 1/b + 1/c + 1/d, and this writes k as the sum of 4 divisors of k if k is divisible by a,b,c, and d. If k is even and divisible by 3, we can use 1 = 1/3 + 1/3 + 1/6 + 1/6; if divisible by 4, 1 = 1/4 + 1/4 + 1/4 + 1/4; if even and divisible by 5, 1 = 1/2 + 1/5 + 1/5 + 1/10. - Robert Israel, Sep 01 2022
The asymptotic density of this sequence is 11/30. - Amiram Eldar, Aug 08 2023
LINKS
Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-1).
FORMULA
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - 2*a(n-6) + 2*a(n-7) - 2*a(n-8) + 2*a(n-9) - 2*a(n-10) + 2*a(n-11) - 2*a(n-12) + 2*a(n-13) - 2*a(n-14) + 2*a(n-15) - 2*a(n-16) + 2*a(n-17) - 2*a(n-18) + 2*a(n-19) - 2*a(n-20) + 2*a(n-21) - a(n-22). - Wesley Ivan Hurt, Jun 29 2024
EXAMPLE
20 is in the sequence since 20 = 10+5+4+1 = 5+5+5+5 where each summand divides 20.
MAPLE
F:= proc(x, S, j) option remember;
local s, k;
if j = 0 then return(x = 0) fi;
if S = [] or x > j*S[-1] then return false fi;
s:= S[-1];
for k from 0 to min(j, floor(x/s)) do
if procname(x-k*s, S[1..-2], j-k) then return true fi
od;
false
end proc:
select(t -> F(t, sort(convert(numtheory:-divisors(t), list)), 4), [$1..200]); # Robert Israel, Aug 31 2022
MATHEMATICA
q[n_, k_] := AnyTrue[Tuples[Divisors[n], k], Total[#] == n &]; Select[Range[200], q[#, 4] &] (* Amiram Eldar, Aug 19 2022 *)
PROG
(PARI) isok(k) = my(d=divisors(k)); forpart(p=k, if (setintersect(d, Set(p)) == Set(p), return(1)), , [4, 4]); \\ Michel Marcus, Aug 19 2022
CROSSREFS
Numbers k that can be written as the sum of j divisors of k (not necessarily distinct) for j=1..10: A000027 (j=1), A299174 (j=2), A355200 (j=3), this sequence (j=4), A355641 (j=5), A356609 (j=6), A356635 (j=7), A356657 (j=8), A356659 (j=9), A356660 (j=10).
Cf. A080671.
Sequence in context: A322839 A074827 A068354 * A075027 A309837 A310659
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Aug 18 2022
STATUS
approved