login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354594
a(n) = n^2 + 2*floor(n/2)^2.
4
0, 1, 6, 11, 24, 33, 54, 67, 96, 113, 150, 171, 216, 241, 294, 323, 384, 417, 486, 523, 600, 641, 726, 771, 864, 913, 1014, 1067, 1176, 1233, 1350, 1411, 1536, 1601, 1734, 1803, 1944, 2017, 2166, 2243, 2400, 2481, 2646, 2731, 2904
OFFSET
0,3
COMMENTS
The first bisection is A033581, the second bisection is A080859. - Bernard Schott, Jun 07 2022
FORMULA
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5), n >= 5.
a(n) = A000290(n) + 2*A008794(n).
G.f.: x*(1 + 5*x + 3*x^2 + 3*x^3)/((1 - x)^3*(1 + x)^2).
E.g.f.: (x*(1 + 3*x)*cosh(x) + (1 + 3*x + 3*x^2)*sinh(x))/2. - Stefano Spezia, Jun 07 2022
MATHEMATICA
a[n_] := n^2 + 2 Floor[n/2]^2
Table[a[n], {n, 0, 90}] (* A354594 *)
LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 6, 11, 24}, 60]
PROG
(PARI) a(n) = n^2 + 2*(n\2)^2;
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
David Lovler, Jun 01 2022
STATUS
approved