Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Oct 09 2022 09:42:18
%S 9,10,12,14,15,16,18,20,21,22,24,25,26,27,28,30,32,33,35,36,39,40,42,
%T 44,45,48,50,51,52,54,55,56,57,60,63,64,65,66,68,70,72,75,76,77,78,80,
%U 81,84,85,88,90,92,96,98,99,100,102,104,105,108,110,112,114,117,120,125
%N Numbers k that can be written as the sum of 9 divisors of k (not necessarily distinct).
%C If k is in the sequence then so is k*m. - _David A. Corneth_, Oct 08 2022
%H David A. Corneth, <a href="/A356659/b356659.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n + t) = a(n) + s for some finite t and s. - _David A. Corneth_, Oct 08 2022
%e 14 is in the sequence since 14 = 2+2+2+2+2+1+1+1+1, where each summand divides 14.
%o (PARI) upto(n) = { my(v = vector(n,i,-1), t = 0); for(i = 1, n, if(v[i] == -1, print1(i", "); v[i] = is(i, 9); if(v[i] == 1, for(j = 2, n \ i, v[i*j] = 1; ) ) ); ); select(x->x >= 1, v, 1); }
%o is(n, {qd = 10}) = { my(d = divisors(n)); d = d[^#d]; forvec(x = vector(qd-1, i, [1, #d]), s = sum(i = 1, qd-1, d[x[i]]); if(n - s >= d[x[qd - 1]], if(n % (n - s) == 0, return(1); ) ) , 1 ); 0 } \\ _David A. Corneth_, Oct 08 2022
%Y Numbers k that can be written as the sum of j divisors of k (not necessarily distinct) for j=1..10: A000027 (j=1), A299174 (j=2), A355200 (j=3), A354591 (j=4), A355641 (j=5), A356609 (j=6), A356635 (j=7), A356657 (j=8), this sequence (j=9), A356660 (j=10).
%K nonn
%O 1,1
%A _Wesley Ivan Hurt_, Aug 20 2022