login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167822
Subsequence of A167709 whose indices are congruent to 1 mod 5, i.e., a(n) = A167709(5*n+1).
1
1, 560, 190399, 64735100, 22009743601, 7483248089240, 2544282340597999, 865048512555230420, 294113949986437744801, 99997877946876278001920, 33998984387987948082907999, 11559554694037955471910717740, 3930214596988516872501561123601
OFFSET
0,2
FORMULA
a(n+2) = 340*a(n+1) - a(n).
a(n+1) = 170*a(n) + 39*sqrt(19*(a(n))^2 + 81).
G.f.: (1 + 220*z)/(1 - 340*z + z^2).
a(n) = (10*sqrt(19) + 19)/38*(170 + 39*sqrt(19))^n + (-10*sqrt(19) + 19)/38*(170 - 39*sqrt(19))^n.
EXAMPLE
a(0) = A167709(1) = 1, a(1) = A167709(6) = 560.
MAPLE
w(0):=1:for n from 0 to 20 do w(n+1):=170*w(n)+39*sqrt(19*(w(n))^2+81) :od: seq(w(n), n=0..20); for n from 0 to 20 do u(n):=simplify((10*sqrt(19)+19)/38*(170+39*sqrt(19))^(n)+(-10*sqrt(19)+19)/38*(170-39*sqrt(19))^(n)):od:seq(u(n), n=0..20); taylor(((1+560*z-1*340*z)/(1-340*z+z^2)), z=0, 21);
MATHEMATICA
LinearRecurrence[{340, -1}, {1, 560}, 50] (* G. C. Greubel, Jun 27 2016 *)
RecurrenceTable[{a[1] == 1, a[2] == 560, a[n] == 340 a[n-1] - a[n-2]}, a, {n, 15}] (* Vincenzo Librandi, Jun 28 2016 *)
PROG
(Magma) I:=[1, 560]; [n le 2 select I[n] else 340*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 28 2016
CROSSREFS
Sequence in context: A193171 A013487 A229389 * A104590 A259211 A265261
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, Nov 13 2009
STATUS
approved