The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A167822 Subsequence of A167709 whose indices are congruent to 1 mod 5, i.e., a(n) = A167709(5*n+1). 1
 1, 560, 190399, 64735100, 22009743601, 7483248089240, 2544282340597999, 865048512555230420, 294113949986437744801, 99997877946876278001920, 33998984387987948082907999, 11559554694037955471910717740, 3930214596988516872501561123601 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..100 Index entries for linear recurrences with constant coefficients, signature (340,-1). FORMULA a(n+2) = 340*a(n+1) - a(n). a(n+1) = 170*a(n) + 39*sqrt(19*(a(n))^2 + 81). G.f.: (1 + 220*z)/(1 - 340*z + z^2). a(n) = (10*sqrt(19) + 19)/38*(170 + 39*sqrt(19))^n + (-10*sqrt(19) + 19)/38*(170 - 39*sqrt(19))^n. EXAMPLE a(0) = A167709(1) = 1, a(1) = A167709(6) = 560. MAPLE w(0):=1:for n from 0 to 20 do w(n+1):=170*w(n)+39*sqrt(19*(w(n))^2+81) :od: seq(w(n), n=0..20); for n from 0 to 20 do u(n):=simplify((10*sqrt(19)+19)/38*(170+39*sqrt(19))^(n)+(-10*sqrt(19)+19)/38*(170-39*sqrt(19))^(n)):od:seq(u(n), n=0..20); taylor(((1+560*z-1*340*z)/(1-340*z+z^2)), z=0, 21); MATHEMATICA LinearRecurrence[{340, -1}, {1, 560}, 50] (* G. C. Greubel, Jun 27 2016 *) RecurrenceTable[{a[1] == 1, a[2] == 560, a[n] == 340 a[n-1] - a[n-2]}, a, {n, 15}] (* Vincenzo Librandi, Jun 28 2016 *) PROG (MAGMA) I:=[1, 560]; [n le 2 select I[n] else 340*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 28 2016 CROSSREFS Sequence in context: A193171 A013487 A229389 * A104590 A259211 A265261 Adjacent sequences:  A167819 A167820 A167821 * A167823 A167824 A167825 KEYWORD easy,nonn AUTHOR Richard Choulet, Nov 13 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 16:50 EDT 2021. Contains 347586 sequences. (Running on oeis4.)