login
A265261
Smallest n-Knödel number, i.e., smallest composite c > n such that each b < c coprime to c satisfies b^(c-n) == 1 (mod c).
1
561, 4, 9, 6, 25, 8, 15, 12, 21, 12, 15, 16, 33, 24, 21, 20, 65, 24, 51, 24, 45, 24, 33, 32, 69, 30, 39, 40, 65, 36, 87, 40, 45, 44, 51, 40, 85, 56, 57, 48, 65, 72, 91, 48, 63, 66, 69, 60, 141, 56, 63, 60, 65, 72, 75, 60, 63, 70, 87, 72, 133, 122, 93, 80, 165
OFFSET
1,1
LINKS
Wikipedia, Knödel number.
MATHEMATICA
Table[SelectFirst[Range[n + 1, 10^3], Function[c, CompositeQ@ c && AllTrue[Range[1, c - 1] /. x_ /; ! CoprimeQ[x, c] -> Nothing, Mod[#^(c - n), c] == 1 &]]], {n, 65}] (* Michael De Vlieger, Apr 06 2016, Version 10 *)
PROG
(PARI) a(n) = forcomposite(c=n+1, , my(i=0, j=0); for(b=1, c-1, if(gcd(b, c)==1, i++; if(Mod(b, c)^(c-n)==1, j++))); if(i==j, return(c)))
KEYWORD
nonn
AUTHOR
Felix Fröhlich, Apr 06 2016
STATUS
approved