login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265264
Terms satisfy: a(2*n) = a(n)*b(n) and a(2*n+1) = a(n+1)*b(n) for n>=0 with a(0)=1, where A(x)^2 = Sum_{n>=0} b(n)*x^n and g.f. A(x) = Sum_{n>=0} a(n)*x^n.
3
1, 1, 2, 4, 10, 20, 48, 120, 320, 640, 1520, 3648, 9216, 23040, 59520, 158720, 426240, 852480, 2037760, 4839680, 12038400, 28892160, 72142848, 182255616, 464781312, 1161953280, 2957967360, 7641415680, 19777781760, 52740751360, 138779688960, 372690616320, 990786355200, 1981572710400, 4793092669440, 11457362657280, 28548724162560
OFFSET
0,3
COMMENTS
What is the limit a(n)^(1/n) = ? The limit is at least 2.535...
LINKS
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 20*x^5 + 48*x^6 + 120*x^7 + 320*x^8 + 640*x^9 + 1520*x^10 + 3648*x^11 + 9216*x^12 +...
where
A(x)^2 = 1 + 2*x + 5*x^2 + 12*x^3 + 32*x^4 + 76*x^5 + 192*x^6 + 496*x^7 + 1332*x^8 + 3184*x^9 + 7920*x^10 + 19776*x^11 + 50432*x^12 +...+ A265265(n)*x^n +...
Illustration of initial terms, both a(n) of A(x) and b(n) of A(x)^2:
a(0) = a(0)*b(0) = 1; b(0) = 1;
a(1) = a(1)*b(0) = 1; b(1) = 2 = 1*1 + 1*1;
a(2) = a(1)*b(1) = 2; b(2) = 5 = 1*2 + 1*1 + 2*1;
a(3) = a(2)*b(1) = 4; b(3) = 12 = 1*4 + 1*2 + 2*1 + 4*1;
a(4) = a(2)*b(2) = 10; b(4) = 32 = 1*10 + 1*4 + 2*2 + 4*1 + 10*1;
a(5) = a(3)*b(2) = 28; b(5) = 76;
a(6) = a(3)*b(3) = 48; b(6) = 192;
a(7) = a(4)*b(3) = 120; b(7) = 496;
a(8) = a(4)*b(4) = 320; b(8) = 1332; ...
PROG
(PARI) {a(n) = my(A=1+x); for(k=2, n, A = A + a((k+1)\2) * polcoeff(A^2, k\2) * x^k +x*O(x^n) ); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
(PARI) {a(n) = my(A=[1, 1]); for(k=2, n, A = concat(A, A[(k+1)\2+1]*Vec(Ser(A)^2)[k\2+1]) ); A[n+1]}
for(n=0, 40, print1(a(n), ", "))
(PARI) /* Generates N terms rather quickly: */
N=300; A=[1, 1]; for(k=2, N, A = concat(A, A[(k+1)\2+1]*Vec(Ser(A)^2)[k\2+1]) ); A
CROSSREFS
Cf. A265265 (A^2), A257889.
Sequence in context: A003407 A151523 A317708 * A026395 A247630 A015889
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 15 2015
STATUS
approved