login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265267
E.g.f.: exp(-2) * Sum_{n>=0} 2^n * (1+x)^(n^2) / n!.
0
1, 6, 88, 2160, 76336, 3594112, 214575872, 15695861760, 1371486918144, 140382841170944, 16572993648603136, 2228162239340027904, 337576082591565651968, 57121976918741964259328, 10713284121614206013898752, 2212342319434677836830015488, 500118162321472987555560620032, 123128345425943590420826294059008, 32864579386892803455158341264736256
OFFSET
0,2
EXAMPLE
E.g.f.: A(x) = 1 + 6*x + 88*x^2/2! + 2160*x^3/3! + 76336*x^4/4! + 3594112*x^5/5! + 214575872*x^6/6! + 15695861760*x^7/7! + 1371486918144*x^8/8! +...
where
A(x)*exp(2) = 1 + 2*(1+x) + 2^2*(1+x)^4/2! + 2^3*(1+x)^9/3! + 2^4*(1+x)^16/4! + 2^5*(1+x)^25/5! + 2^6*(1+x)^36/6! + 2^7*(1+x)^49/7! + 2^8*(1+x)^64/8! +...
PROG
(PARI) /* Quick print of terms 0..30: */
\p80
Vec(round( serlaplace( sum(n=0, 400, 2^n * (1+x +O(x^31))^(n^2) /n! *1.)/exp(2) ) ))
CROSSREFS
Cf. A014507.
Sequence in context: A210005 A178296 A122770 * A218260 A177567 A177563
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 04 2016
STATUS
approved