login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014507 Number of digraphs with loops, having unlabeled (non-isolated) nodes and n labeled edges. 19
1, 2, 13, 162, 3075, 80978, 2784067, 119971162, 6289972169, 392257225754, 28582571639293, 2398695602082442, 229094801646110203, 24652935339990534970, 2963620352166634246995, 395067805289398293647026, 58025593661340099613984593, 9336949406574071339557552946 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
REFERENCES
G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
LINKS
G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
FORMULA
a(n) = Sum_{k=0..n} Stirling1(n, k)*Bell(2*k). - Vladeta Jovovic, Jun 21 2003
E.g.f.: exp(-1)*Sum_{n>=0} (1+x)^(n^2)/n!. - Paul D. Hanna, Jul 03 2011
a(n) = n!*exp(-1)*Sum_{k>=sqrt(n)} binomial(k^2,n)/k!. - Paul D. Hanna, Jul 03 2011
MAPLE
A014507 := proc(n)
add(combinat[stirling1](n, k)*combinat[bell](2*k), k=0..n) ;
end proc:
seq(A014507(n), n=0..10) ; # R. J. Mathar, Apr 30 2017
MATHEMATICA
a[n_] := Sum[StirlingS1[n, k]*BellB[2*k], {k, 0, n}];
Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Jan 21 2018, from Vladeta Jovovic's formula *)
PROG
(PARI) /* From Vladeta Jovovic's formula: */
{Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)}
{Bell(n)=n!*polcoeff(exp(exp(x+x*O(x^n))-1), n)}
{a(n)=sum(k=0, n, Stirling1(n, k)*Bell(2*k))}
CROSSREFS
Sequence in context: A347051 A291140 A192563 * A132614 A187927 A252766
KEYWORD
nonn
AUTHOR
Simon Plouffe, Gilbert Labelle (gilbert(AT)lacim.uqam.ca)
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 16 23:59 EDT 2024. Contains 375984 sequences. (Running on oeis4.)