login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211251
E.g.f.: exp(-1)*Sum_{n>=0} (1+x)^(n^4)/n!.
3
1, 15, 4125, 4201207, 10454906015, 51619504083157, 445183896786430439, 6151183312376366042809, 127892318444027363237894001, 3815107763405827557700743314007, 157278812586433713743644391748289829, 8693308684725580082237757157480179540583
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} Stirling1(n, k)*Bell(4*k).
a(n) = n!*exp(-1)*Sum_{k>=[n^(1/4)]} binomial(k^4,n)/k!.
EXAMPLE
E.g.f.: A(x) = 1 + 15*x + 4125*x^2/2! + 4201207*x^3/3! + 10454906015*x^4/4! +...
such that
A(x) = exp(-1)*(1 + (1+x) + (1+x)^16/2! + (1+x)^81/3! + (1+x)^256/4! +...).
PROG
(PARI) {Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)}
{Bell(n)=n!*polcoeff(exp(exp(x+x*O(x^n))-1), n)}
{a(n)=sum(k=0, n, Stirling1(n, k)*Bell(4*k))}
for(n=0, 15, print1(a(n), ", "))
CROSSREFS
Sequence in context: A374335 A172322 A139297 * A208469 A070907 A208053
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 07 2012
STATUS
approved