login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211254
Number of (n+1) X (n+1) -6..6 symmetric matrices with every 2 X 2 subblock having sum zero and three distinct values.
1
64, 130, 246, 456, 840, 1538, 2830, 5214, 9672, 18020, 33790, 63702, 120752, 230126, 440512, 847370, 1635656, 3170660, 6162524, 12020244, 23492880, 46050762, 90403706, 177902814, 350479066, 691826684, 1366757298, 2704492222, 5354853154
OFFSET
1,1
COMMENTS
Symmetry and 2 X 2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j) = (x(i,i)+x(j,j))/2*(-1)^(i-j).
LINKS
FORMULA
Empirical: a(n) = 5*a(n-1) - 36*a(n-3) + 41*a(n-4) + 82*a(n-5) - 151*a(n-6) - 54*a(n-7) + 204*a(n-8) - 28*a(n-9) - 110*a(n-10) + 36*a(n-11) + 20*a(n-12) - 8*a(n-13).
Empirical g.f.: 2*x*(32 - 95*x - 202*x^2 + 765*x^3 + 308*x^4 - 2192*x^5 + 237*x^6 + 2761*x^7 - 876*x^8 - 1493*x^9 + 604*x^10 + 284*x^11 - 124*x^12) / ((1 - x)*(1 - 2*x)*(1 - x - x^2)*(1 - 2*x^2)*(1 - x - 2*x^2 + x^3)*(1 - 4*x^2 + 2*x^4)). - Colin Barker, Jul 16 2018
EXAMPLE
Some solutions for n=3:
.-3..4.-3..4....6.-1..6.-1...-5..1.-5..3....6..0..6.-3....4..1..1..1
..4.-5..4.-5...-1.-4.-1.-4....1..3..1..1....0.-6..0.-3....1.-6..4.-6
.-3..4.-3..4....6.-1..6.-1...-5..1.-5..3....6..0..6.-3....1..4.-2..4
..4.-5..4.-5...-1.-4.-1.-4....3..1..3.-1...-3.-3.-3..0....1.-6..4.-6
CROSSREFS
Sequence in context: A235058 A366287 A252088 * A252081 A068410 A250654
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 06 2012
STATUS
approved