login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211257
Number of (n+1)X(n+1) -6..6 symmetric matrices with every 2X2 subblock having sum zero and one, two or three distinct values
1
85, 231, 547, 1283, 2901, 6595, 14775, 33409, 75157, 170723, 387687, 888293, 2039449, 4718583, 10949039, 25566565, 59877913, 140930679, 332585711, 787830185, 1870341077, 4452666039, 10618825855, 25375634725, 60720707925
OFFSET
1,1
COMMENTS
Symmetry and 2X2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j)=(x(i,i)+x(j,j))/2*(-1)^(i-j)
LINKS
FORMULA
Empirical: a(n) = 6*a(n-1) +6*a(n-2) -97*a(n-3) +62*a(n-4) +668*a(n-5) -852*a(n-6) -2556*a(n-7) +4359*a(n-8) +5935*a(n-9) -12593*a(n-10) -8545*a(n-11) +22727*a(n-12) +7400*a(n-13) -26431*a(n-14) -3396*a(n-15) +19783*a(n-16) +389*a(n-17) -9298*a(n-18) +302*a(n-19) +2606*a(n-20) -118*a(n-21) -392*a(n-22) +12*a(n-23) +24*a(n-24)
EXAMPLE
Some solutions for n=3
..3.-2..1.-2...-4..2.-2..1....4..0..0..0...-2..1.-1..2....3.-1..2.-1
.-2..1..0..1....2..0..0..1....0.-4..4.-4....1..0..0.-1...-1.-1..0.-1
..1..0.-1..0...-2..0..0.-1....0..4.-4..4...-1..0..0..1....2..0..1..0
.-2..1..0..1....1..1.-1..2....0.-4..4.-4....2.-1..1.-2...-1.-1..0.-1
CROSSREFS
Sequence in context: A044798 A260100 A072289 * A027524 A043340 A045129
KEYWORD
nonn
AUTHOR
R. H. Hardin Apr 06 2012
STATUS
approved