login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211259
Number of (n+1)X(n+1) -6..6 symmetric matrices with every 2X2 subblock having sum zero and one, three or four distinct values
1
65, 335, 1703, 8645, 43643, 219333, 1097247, 5465297, 27114351, 134027929, 660336579, 3243840829, 15893481911, 77692754369, 379020868055, 1845782118641, 8974924575259, 43581782793301, 211388981838455, 1024316233634281
OFFSET
1,1
COMMENTS
Symmetry and 2X2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j)=(x(i,i)+x(j,j))/2*(-1)^(i-j)
LINKS
FORMULA
Empirical: a(n) = 28*a(n-1) -155*a(n-2) -2658*a(n-3) +32061*a(n-4) +66366*a(n-5) -2314922*a(n-6) +3159336*a(n-7) +97801748*a(n-8) -317172988*a(n-9) -2797365748*a(n-10) +13347627288*a(n-11) +57922813108*a(n-12) -369288318800*a(n-13) -900259137962*a(n-14) +7525220569156*a(n-15) +10736644664141*a(n-16) -118794611594160*a(n-17) -100177501866905*a(n-18) +1492188101583602*a(n-19) +756635414359131*a(n-20) -15127411602979766*a(n-21) -4996517564711412*a(n-22) +124488915629652484*a(n-23) +32496342097994312*a(n-24) -830961220175609104*a(n-25) -217952927487180360*a(n-26) +4471006873093739800*a(n-27) +1356224545195754860*a(n-28) -19189501086495681880*a(n-29) -6829521421681422792*a(n-30) +64885315804531962064*a(n-31) +25455961312177735008*a(n-32) -171074565270467560384*a(n-33) -66023270051350386176*a(n-34) +350852776730555653120*a(n-35) +111115747477690885952*a(n-36) -562968030704836048256*a(n-37) -102780461262027908992*a(n-38) +705293155294335987968*a(n-39) -1905443632362091008*a(n-40) -673839571496082251776*a(n-41) +149968516817181865984*a(n-42) +463807639149162463232*a(n-43) -222954648389494145024*a(n-44) -202119207628642238464*a(n-45) +174410817888004440064*a(n-46) +32943327636122697728*a(n-47) -77835693049096830976*a(n-48) +15691242889927983104*a(n-49) +16793314088391802880*a(n-50) -9742537633650704384*a(n-51) -56226216776040448*a(n-52) +1727131956136640512*a(n-53) -597215426987950080*a(n-54) +331158386638848*a(n-55) +57745072535371776*a(n-56) -19695514744258560*a(n-57) +3305731101032448*a(n-58) -294085000691712*a(n-59) +11132555231232*a(n-60)
EXAMPLE
Some solutions for n=3
..5.-4..1.-4....1.-2..3..0...-6..5.-3..5....3..0.-1.-2...-4..2..0..5
.-4..3..0..3...-2..3.-4..1....5.-4..2.-4....0.-3..4.-1....2..0.-2.-3
..1..0.-3..0....3.-4..5.-2...-3..2..0..2...-1..4.-5..2....0.-2..4..1
.-4..3..0..3....0..1.-2.-1....5.-4..2.-4...-2.-1..2..1....5.-3..1.-6
CROSSREFS
Sequence in context: A365874 A319617 A300162 * A069758 A116678 A218845
KEYWORD
nonn
AUTHOR
R. H. Hardin Apr 06 2012
STATUS
approved