login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A211262 Number of integer pairs (x,y) such that 0<x<y<=n and x*y=3n. 9
0, 0, 0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 3, 1, 2, 1, 4, 2, 2, 1, 4, 2, 2, 1, 4, 1, 4, 1, 4, 2, 2, 3, 4, 1, 2, 2, 6, 1, 4, 1, 4, 3, 2, 1, 5, 2, 4, 2, 4, 1, 3, 3, 6, 2, 2, 1, 7, 1, 2, 3, 5, 3, 4, 1, 4, 2, 6, 1, 6, 1, 2, 3, 4, 3, 4, 1, 8, 2, 2, 1, 7, 3, 2, 2, 6, 1, 6, 3, 4, 2, 2, 3, 7, 1, 4, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,8

COMMENTS

For a guide to related sequences, see A211266.

LINKS

Table of n, a(n) for n=1..99.

MATHEMATICA

a = 1; b = n; z1 = 120;

t[n_] := t[n] = Flatten[Table[x*y, {x, a, b - 1},

{y, x + 1, b}]]

c[n_, k_] := c[n, k] = Count[t[n], k]

Table[c[n, n], {n, 1, z1}]           (* A056924 *)

Table[c[n, n + 1], {n, 1, z1}]       (* A211159 *)

Table[c[n, 2*n], {n, 1, z1}]         (* A211261 *)

Table[c[n, 3*n], {n, 1, z1}]         (* A211262 *)

Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211263 *)

Print

c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]

Table[c1[n, n], {n, 1, z1}]          (* A211264 *)

Table[c1[n, n + 1], {n, 1, z1}]      (* A211265 *)

Table[c1[n, 2*n], {n, 1, z1}]        (* A211266 *)

Table[c1[n, 3*n], {n, 1, z1}]        (* A211267 *)

Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A181972 *)

CROSSREFS

Cf. A211266.

Sequence in context: A008617 A025824 A230037 * A185319 A161232 A161056

Adjacent sequences:  A211259 A211260 A211261 * A211263 A211264 A211265

KEYWORD

nonn

AUTHOR

Clark Kimberling, Apr 06 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 4 09:03 EDT 2020. Contains 336201 sequences. (Running on oeis4.)