login
A211262
Number of integer pairs (x,y) such that 0<x<y<=n and x*y=3n.
9
0, 0, 0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 3, 1, 2, 1, 4, 2, 2, 1, 4, 2, 2, 1, 4, 1, 4, 1, 4, 2, 2, 3, 4, 1, 2, 2, 6, 1, 4, 1, 4, 3, 2, 1, 5, 2, 4, 2, 4, 1, 3, 3, 6, 2, 2, 1, 7, 1, 2, 3, 5, 3, 4, 1, 4, 2, 6, 1, 6, 1, 2, 3, 4, 3, 4, 1, 8, 2, 2, 1, 7, 3, 2, 2, 6, 1, 6, 3, 4, 2, 2, 3, 7, 1, 4, 3
OFFSET
1,8
COMMENTS
For a guide to related sequences, see A211266.
MATHEMATICA
a = 1; b = n; z1 = 120;
t[n_] := t[n] = Flatten[Table[x*y, {x, a, b - 1},
{y, x + 1, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
Table[c[n, n], {n, 1, z1}] (* A056924 *)
Table[c[n, n + 1], {n, 1, z1}] (* A211159 *)
Table[c[n, 2*n], {n, 1, z1}] (* A211261 *)
Table[c[n, 3*n], {n, 1, z1}] (* A211262 *)
Table[c[n, Floor[n/2]], {n, 1, z1}] (* A211263 *)
Print
c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
Table[c1[n, n], {n, 1, z1}] (* A211264 *)
Table[c1[n, n + 1], {n, 1, z1}] (* A211265 *)
Table[c1[n, 2*n], {n, 1, z1}] (* A211266 *)
Table[c1[n, 3*n], {n, 1, z1}] (* A211267 *)
Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A181972 *)
CROSSREFS
Cf. A211266.
Sequence in context: A339369 A025824 A230037 * A185319 A161232 A161056
KEYWORD
nonn
AUTHOR
Clark Kimberling, Apr 06 2012
STATUS
approved