OFFSET
1,3
COMMENTS
Guide to related sequences:
A056924 ... 1<=x<y<=n .... x*y=n
A211159 ... 1<=x<y<=n .... x*y=n+1
A211261 ... 1<=x<y<=n .... x*y=2n
A211262 ... 1<=x<y<=n .... x*y=3n
A211263 ... 1<=x<y<=n .... x*y=floor(n/2)
A211264 ... 1<=x<y<=n .... x*y<=n
A211265 ... 1<=x<y<=n .... x*y<=n+1
A211266 ... 1<=x<y<=n .... x*y<=2n
A211267 ... 1<=x<y<=n .... x*y<=3n
A181972 ... 1<=x<y<=n .... x*y<=floor(n/2)
A038548 ... 1<=x<=y<=n ... x*y=n
A072670 ... 1<=x<=y<=n ... x*y=n+1
A211270 ... 1<=x<=y<=n ... x*y=2n
A211271 ... 1<=x<=y<=n ... x*y=3n
A211272 ... 1<=x<=y<=n ... x*y=floor(n/2)
A094820 ... 1<=x<=y<=n ... x*y<=n
A091627 ... 1<=x<=y<=n ... x*y<=n+1
A211273 ... 1<=x<=y<=n ... x*y<=2n
A211274 ... 1<=x<=y<=n ... x*y<=3n
A211275 ... 1<=x<=y<=n ... x*y<=floor(n/2)
EXAMPLE
a(6) counts these pairs: (1,2), (1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6), (3,4).
MATHEMATICA
a = 1; b = n; z1 = 120;
t[n_] := t[n] = Flatten[Table[x*y, {x, a, b - 1},
{y, x + 1, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
Table[c[n, n], {n, 1, z1}] (* A056924 *)
Table[c[n, n + 1], {n, 1, z1}] (* A211159 *)
Table[c[n, 2*n], {n, 1, z1}] (* A211261 *)
Table[c[n, 3*n], {n, 1, z1}] (* A211262 *)
Table[c[n, Floor[n/2]], {n, 1, z1}] (* A211263 *)
Print
c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
Table[c1[n, n], {n, 1, z1}] (* A211264 *)
Table[c1[n, n + 1], {n, 1, z1}] (* A211265 *)
Table[c1[n, 2*n], {n, 1, z1}] (* A211266 *)
Table[c1[n, 3*n], {n, 1, z1}] (* A211267 *)
Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A181972 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Apr 06 2012
STATUS
approved