login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A211271
Number of integer pairs (x,y) such that 0<x<=y<=n and x*y=3n.
8
0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 2, 3, 1, 2, 1, 4, 2, 2, 1, 4, 2, 2, 2, 4, 1, 4, 1, 4, 2, 2, 3, 4, 1, 2, 2, 6, 1, 4, 1, 4, 3, 2, 1, 6, 2, 4, 2, 4, 1, 3, 3, 6, 2, 2, 1, 7, 1, 2, 3, 5, 3, 4, 1, 4, 2, 6, 1, 6, 1, 2, 4, 4, 3, 4, 1, 8, 2, 2, 1, 7, 3, 2, 2, 6, 1, 6, 3, 4, 2, 2, 3, 7, 1, 4, 3, 7, 1, 4, 1, 6, 5, 2, 1, 6
OFFSET
1,8
COMMENTS
For a guide to related sequences, see A211266.
LINKS
EXAMPLE
a(3) counts this pair: (3,3). - Antti Karttunen, Jan 15 2025
a(20) counts these pairs: (3,20), (4,15), (5,12), (6,10).
MATHEMATICA
a = 1; b = n; z1 = 120;
t[n_] := t[n] = Flatten[Table[x*y, {x, a, b - 1},
{y, x, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
Table[c[n, n], {n, 1, z1}] (* A038548 *)
Table[c[n, n + 1], {n, 1, z1}] (* A072670 *)
Table[c[n, 2*n], {n, 1, z1}] (* A211270 *)
Table[c[n, 3*n], {n, 1, z1}] (* A211271 *)
Table[c[n, Floor[n/2]], {n, 1, z1}] (* A211272 *)
c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
Print
Table[c1[n, n], {n, 1, z1}] (* A094820 *)
Table[c1[n, n + 1], {n, 1, z1}] (* A091627 *)
Table[c1[n, 2*n], {n, 1, z1}] (* A211273 *)
Table[c1[n, 3*n], {n, 1, z1}] (* A211274 *)
Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *)
PROG
(PARI) A211271(n) = { my(n3=3*n); sumdiv(n3, d, (d <= (n3/d) && (n3/d) <= n)); }; \\ Antti Karttunen, Jan 15 2025
CROSSREFS
Cf. A211266.
Cf. also A211262.
Sequence in context: A178691 A329313 A329312 * A124768 A321014 A072527
KEYWORD
nonn,changed
AUTHOR
Clark Kimberling, Apr 07 2012
EXTENSIONS
Data section extended up to a(108) and a(3) corrected from 0 to 1 by Antti Karttunen, Jan 15 2025
STATUS
approved