

A072527


Number of values of k such that n divided by k leaves a remainder 3.


2



0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 4, 2, 2, 1, 5, 2, 2, 2, 4, 1, 5, 1, 4, 2, 2, 3, 6, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 7, 2, 4, 2, 4, 1, 5, 3, 6, 2, 2, 1, 9, 1, 2, 4, 5, 3, 5, 1, 4, 2, 6, 1, 9, 1, 2, 4, 4, 3, 5, 1, 8, 3, 2, 1, 9, 3, 2, 2, 6, 1, 9, 3, 4, 2, 2, 3, 9, 1, 4, 4, 7, 1, 5
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,11


COMMENTS

For n > 3, the number of divisors of (n  3) that are greater than 3; equivalently, those that are less than (n  3)/3.  Peter Munn, May 18 2017


LINKS

Table of n, a(n) for n=1..105.


FORMULA

a(n) = tau(n3)1 if n is congruent to {2, 4} mod 6, tau(n3)2 if n is congruent to {0, 1, 5} mod 6, tau(n3)3 if n is congruent to 3 mod 6; n<>3.  Vladeta Jovovic, Aug 06 2002
G.f.: Sum_{k>0} x^(4*k+3)/(1x^k).  Vladeta Jovovic, Dec 15 2002


EXAMPLE

a(15) = 3 as 15 divided by exactly three numbers 4, 6 and 12 leaves a remainder 3.


PROG

(PARI) a(n) = sum(k=1, n1, (n % k) == 3); \\ Michel Marcus, May 25 2017
(PARI) a(n)=if(n>6, numdiv(n3)  if(n%6==3, 3, if(n%6==2  n%6==4, 1, 2)), 0) \\ Charles R Greathouse IV, May 27 2017


CROSSREFS

Cf. A023645, A072528.
Sequence in context: A211271 A124768 A321014 * A081373 A029436 A263274
Adjacent sequences: A072524 A072525 A072526 * A072528 A072529 A072530


KEYWORD

nonn,easy


AUTHOR

Amarnath Murthy, Aug 01 2002


EXTENSIONS

More terms from Matthew Conroy, Sep 09 2002
Incorrect comment deleted by Peter Munn, May 25 2017


STATUS

approved



