OFFSET
1,3
COMMENTS
In spectroscopy, when comparing absorbtion peak shapes, the functions are first scaled vertically and horizontally to a canonical form with unit height and unit half-height width. The 4 most common canonical shapes are: rectangular R(x)=1 for |x|<=1/2 (0 otherwise), Lorentzian L(x)=1/(1+(2x)^2), Gaussian G(x)=exp(-log(2)(2x)^2), and sinc-type S(x) (see A211269). The areas A under such canonical peaks (integral from -inf to +inf) are 1.0 for R(x), (Pi/2)=A019669 for L(x), this constant for G(x), and A211269 for S(x). For a generic peak with height H and half-height width W belonging to the same canonical family, the area is A*H*W. Hence the practical importance of the constant A.
REFERENCES
M. Quack and F. Merckt, Editors, Handbook of High Resolution Spectroscopy, Wiley, 2011.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
FORMULA
Equals sqrt(Pi/(4*log(2))).
EXAMPLE
1.064467019431226179315267...
MATHEMATICA
RealDigits[Sqrt[Pi/(4*Log[2])], 10, 50][[1]] (* G. C. Greubel, Mar 30 2017 *)
PROG
(PARI) sqrt(Pi/(4*log(2))) \\ G. C. Greubel, Mar 30 2017
CROSSREFS
KEYWORD
AUTHOR
Stanislav Sykora, Apr 07 2012
STATUS
approved