login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094820
Partial sums of A038548.
17
1, 2, 3, 5, 6, 8, 9, 11, 13, 15, 16, 19, 20, 22, 24, 27, 28, 31, 32, 35, 37, 39, 40, 44, 46, 48, 50, 53, 54, 58, 59, 62, 64, 66, 68, 73, 74, 76, 78, 82, 83, 87, 88, 91, 94, 96, 97, 102, 104, 107, 109, 112, 113, 117, 119, 123, 125, 127, 128, 134, 135, 137, 140, 144, 146, 150
OFFSET
1,2
COMMENTS
a(n) = number of pairs (c,d) of integers such that 0 < c <= d and c*d <= n. - Clark Kimberling, Jun 18 2011
Equivalently, the number of representations of n in the form x + y*z, where x, y, and z are positive integers and y <= z. - John W. Layman, Feb 21 2012
FORMULA
G.f.: (1/(1 - x))*Sum_{k>=1} x^(k^2)/(1 - x^k). - Ilya Gutkovskiy, Apr 13 2017
a(n) ~ (log(n) + 2*gamma - 1)*n/2 + sqrt(n)/2, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Aug 19 2019
a(n) = (A006218(n) + A000196(n))/2. - Ridouane Oudra, Nov 25 2022
a(n) = A211264(n) + A000196(n). - Ridouane Oudra, Sep 13 2024
MAPLE
ListTools:-PartialSums([seq(ceil(numtheory:-tau(n)/2), n=1..100)]); # Robert Israel, Feb 24 2016
MATHEMATICA
f[n_, k_] := Floor[n/k] - Floor[(n - 1)/k]
g[n_, k_] := If[k^2 <= n, f[n, k], 0]
Table[Sum[f[n, k], {k, 1, n}], {n, 1, 100}] (* A000005 *)
t = Table[Sum[g[n, k], {k, 1, n}], {n, 1, 100}]
(* A038548 *)
a[n_] := Sum[t[[i]], {i, 1, n}]
Table[a[n], {n, 1, 100}] (* A094820 *)
(* from Clark Kimberling, Jun 18 2011 *)
Table[Sum[Boole[d <= Sqrt[n]], {d, Divisors[n]}], {n, 1, 66}] // Accumulate (* Jean-François Alcover, Dec 13 2012 *)
PROG
(Ruby)
def a(n)
(1..Math.sqrt(n)).inject(0) { |accum, i| accum + 1 + (n/i).to_i - i }
end # Peter Kagey, Feb 24 2016
(PARI) a(n) = sum(k=1, n, ceil(numdiv(k)/2)); \\ Michel Marcus, Feb 24 2016
(Python)
from math import isqrt
def A094820(n): return ((s:=isqrt(n))*(1-s)>>1)+sum(n//k for k in range(1, s+1)) # Chai Wah Wu, Oct 23 2023
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Jun 12 2004
STATUS
approved